Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities

M. Winkler, Discrete and Continuous Dynamical Systems - B 27 (2022).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
<jats:p xml:lang="fr">&lt;p style='text-indent:20px;'&gt;The chemotaxis system&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE1"&gt; \begin{document}$ \begin{array}{l}\left\{ \begin{array}{l} u_t = \nabla \cdot \big( D(u) \nabla u \big) - \nabla \cdot \big( uS(x, u, v)\cdot \nabla v\big), \\ v_t = \Delta v -uv, \end{array} \right. \end{array} $\end{document} &lt;/tex-math&gt;&lt;/disp-formula&gt;&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;is considered in a bounded domain &lt;inline-formula&gt;&lt;tex-math id="M1"&gt;\begin{document}$ \Omega\subset \mathbb{R}^n $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, &lt;inline-formula&gt;&lt;tex-math id="M2"&gt;\begin{document}$ n\ge 2 $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, with smooth boundary.&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;It is shown that if &lt;inline-formula&gt;&lt;tex-math id="M3"&gt;\begin{document}$ D: [0, \infty) \to [0, \infty) $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; and &lt;inline-formula&gt;&lt;tex-math id="M4"&gt;\begin{document}$ S: \overline{\Omega}\times [0, \infty)\times (0, \infty)\to \mathbb{R}^{n\times n} $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; are suitably smooth functions satisfying&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE2"&gt; \begin{document}$ \begin{array}{l}D(u) \ge k_D u^{m-1} \qquad {\rm{for\; all}}\; u\ge 0 \end{array} $\end{document} &lt;/tex-math&gt;&lt;/disp-formula&gt;&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;and&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE3"&gt; \begin{document}$ \begin{array}{l}|S(x, u, v)| \le \frac{S_0(v)}{v^\alpha} \qquad {\rm{for\; all}}\; (x, u, v)\; \in \Omega\times (0, \infty)^2 \end{array} $\end{document} &lt;/tex-math&gt;&lt;/disp-formula&gt;&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;with some&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;&lt;disp-formula&gt; &lt;label/&gt; &lt;tex-math id="FE4"&gt; \begin{document}$ \begin{array}{l}m&amp;gt;\frac{3n-2}{2n} \qquad {\rm{and}}\;\alpha\in [0, 1), \end{array} $\end{document} &lt;/tex-math&gt;&lt;/disp-formula&gt;&lt;/p&gt;&lt;p style='text-indent:20px;'&gt;and with some &lt;inline-formula&gt;&lt;tex-math id="M5"&gt;\begin{document}$ k_D&amp;gt;0 $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; and nondecreasing &lt;inline-formula&gt;&lt;tex-math id="M6"&gt;\begin{document}$ S_0: (0, \infty)\to (0, \infty) $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, then for all suitably regular initial data a corresponding no-flux type initial-boundary value problem admits a global bounded weak solution which actually is smooth and classical if &lt;inline-formula&gt;&lt;tex-math id="M7"&gt;\begin{document}$ D(0)&amp;gt;0 $\end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;.&lt;/p&gt;</jats:p>
Publishing Year
Journal Title
Discrete and Continuous Dynamical Systems - B
Volume
27
Issue
11
Article Number
6565
LibreCat-ID

Cite this

Winkler M. Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities. Discrete and Continuous Dynamical Systems - B. 2022;27(11). doi:10.3934/dcdsb.2022009
Winkler, M. (2022). Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities. Discrete and Continuous Dynamical Systems - B, 27(11), Article 6565. https://doi.org/10.3934/dcdsb.2022009
@article{Winkler_2022, title={Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities}, volume={27}, DOI={10.3934/dcdsb.2022009}, number={116565}, journal={Discrete and Continuous Dynamical Systems - B}, publisher={American Institute of Mathematical Sciences (AIMS)}, author={Winkler, Michael}, year={2022} }
Winkler, Michael. “Approaching Logarithmic Singularities in Quasilinear Chemotaxis-Consumption Systems with Signal-Dependent Sensitivities.” Discrete and Continuous Dynamical Systems - B 27, no. 11 (2022). https://doi.org/10.3934/dcdsb.2022009.
M. Winkler, “Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities,” Discrete and Continuous Dynamical Systems - B, vol. 27, no. 11, Art. no. 6565, 2022, doi: 10.3934/dcdsb.2022009.
Winkler, Michael. “Approaching Logarithmic Singularities in Quasilinear Chemotaxis-Consumption Systems with Signal-Dependent Sensitivities.” Discrete and Continuous Dynamical Systems - B, vol. 27, no. 11, 6565, American Institute of Mathematical Sciences (AIMS), 2022, doi:10.3934/dcdsb.2022009.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar