How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases
M. Winkler, Mathematische Annalen 373 (2018) 1237–1282.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Publishing Year
Journal Title
Mathematische Annalen
Volume
373
Issue
3-4
Page
1237-1282
LibreCat-ID
Cite this
Winkler M. How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Mathematische Annalen. 2018;373(3-4):1237-1282. doi:10.1007/s00208-018-1722-8
Winkler, M. (2018). How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Mathematische Annalen, 373(3–4), 1237–1282. https://doi.org/10.1007/s00208-018-1722-8
@article{Winkler_2018, title={How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases}, volume={373}, DOI={10.1007/s00208-018-1722-8}, number={3–4}, journal={Mathematische Annalen}, publisher={Springer Science and Business Media LLC}, author={Winkler, Michael}, year={2018}, pages={1237–1282} }
Winkler, Michael. “How Unstable Is Spatial Homogeneity in Keller-Segel Systems? A New Critical Mass Phenomenon in Two- and Higher-Dimensional Parabolic-Elliptic Cases.” Mathematische Annalen 373, no. 3–4 (2018): 1237–82. https://doi.org/10.1007/s00208-018-1722-8.
M. Winkler, “How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases,” Mathematische Annalen, vol. 373, no. 3–4, pp. 1237–1282, 2018, doi: 10.1007/s00208-018-1722-8.
Winkler, Michael. “How Unstable Is Spatial Homogeneity in Keller-Segel Systems? A New Critical Mass Phenomenon in Two- and Higher-Dimensional Parabolic-Elliptic Cases.” Mathematische Annalen, vol. 373, no. 3–4, Springer Science and Business Media LLC, 2018, pp. 1237–82, doi:10.1007/s00208-018-1722-8.