Non-crossing partitions for exceptional hereditary curves
B. Baumeister, I. Burban, G. Neaime, C.M. Schwabe, ArXiv:2512.01729 (2025).
Download
No fulltext has been uploaded.
Preprint
| English
Author
Baumeister, Barbara;
Burban, IgorLibreCat;
Neaime, Georges;
Schwabe, Charly MerlinLibreCat
Abstract
We introduce a new class of reflection groups associated with the canonical bilinear lattices of Lenzing, which we call reflection groups of canonical type. The main result of this work is a categorification of the corresponding poset of non-crossing partitions for any such group, realized via the poset of thick subcategories of the category of coherent sheaves on an exceptional hereditary curve generated by an exceptional sequence. A second principal result, essential for the categorification, is a proof of the transitivity of the Hurwitz action in these reflection groups.
Publishing Year
Journal Title
arXiv:2512.01729
LibreCat-ID
Cite this
Baumeister B, Burban I, Neaime G, Schwabe CM. Non-crossing partitions for exceptional hereditary curves. arXiv:251201729. Published online 2025.
Baumeister, B., Burban, I., Neaime, G., & Schwabe, C. M. (2025). Non-crossing partitions for exceptional hereditary curves. In arXiv:2512.01729.
@article{Baumeister_Burban_Neaime_Schwabe_2025, title={Non-crossing partitions for exceptional hereditary curves}, journal={arXiv:2512.01729}, author={Baumeister, Barbara and Burban, Igor and Neaime, Georges and Schwabe, Charly Merlin}, year={2025} }
Baumeister, Barbara, Igor Burban, Georges Neaime, and Charly Merlin Schwabe. “Non-Crossing Partitions for Exceptional Hereditary Curves.” ArXiv:2512.01729, 2025.
B. Baumeister, I. Burban, G. Neaime, and C. M. Schwabe, “Non-crossing partitions for exceptional hereditary curves,” arXiv:2512.01729. 2025.
Baumeister, Barbara, et al. “Non-Crossing Partitions for Exceptional Hereditary Curves.” ArXiv:2512.01729, 2025.