Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
145 Publications
2019 | Journal Article | LibreCat-ID: 63362
Winkler, M. (2019). Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 36(6), 1747–1790. https://doi.org/10.1016/j.anihpc.2019.02.004
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63363
Winkler, M. (2019). Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions. Mathematical Models and Methods in Applied Sciences, 29(03), 373–418. https://doi.org/10.1142/s021820251950012x
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63366
Winkler, M. (2019). Instantaneous regularization of distributions from<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e19" altimg="si17.gif"><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>⋆</mml:mo></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>in the one-dimensional parabolic Keller–Segel system. Nonlinear Analysis, 183, 102–116. https://doi.org/10.1016/j.na.2019.01.017
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63359
Wang, Y., Winkler, M., & Xiang, Z. (2019). The fast signal diffusion limit in Keller–Segel(-fluid) systems. Calculus of Variations and Partial Differential Equations, 58(6), Article 196. https://doi.org/10.1007/s00526-019-1656-3
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63364
Winkler, M. (2019). How strong singularities can be regularized by logistic degradation in the Keller–Segel system? Annali Di Matematica Pura Ed Applicata (1923 -), 198(5), 1615–1637. https://doi.org/10.1007/s10231-019-00834-z
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63367
Winkler, M. (2019). Does repulsion-type directional preference in chemotactic migration continue to regularize Keller–Segel systems when coupled to the Navier–Stokes equations? Nonlinear Differential Equations and Applications NoDEA, 26(6), Article 48. https://doi.org/10.1007/s00030-019-0600-8
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63354
Souplet, P., & Winkler, M. (2018). Blow-up Profiles for the Parabolic–Elliptic Keller–Segel System in Dimensions $${n\geq 3}$$ n ≥ 3. Communications in Mathematical Physics, 367(2), 665–681. https://doi.org/10.1007/s00220-018-3238-1
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63361
Winkler, M. (2018). How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Mathematische Annalen, 373(3–4), 1237–1282. https://doi.org/10.1007/s00208-018-1722-8
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63365
Winkler, M. (2018). Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. Journal of Differential Equations, 266(12), 8034–8066. https://doi.org/10.1016/j.jde.2018.12.019
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63360
Winkler, M. (2018). A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization. Journal of Functional Analysis, 276(5), 1339–1401. https://doi.org/10.1016/j.jfa.2018.12.009
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63369
Cao, X., & Winkler, M. (2018). Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148(5), 939–955. https://doi.org/10.1017/s0308210518000057
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63368
Winkler, M. (2018). Boundedness in a Chemotaxis-May-Nowak Model for Virus Dynamics with Mildly Saturated Chemotactic Sensitivity. Acta Applicandae Mathematicae, 163(1), 1–17. https://doi.org/10.1007/s10440-018-0211-0
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63370
Espejo, E., & Winkler, M. (2018). Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization. Nonlinearity, 31(4), 1227–1259. https://doi.org/10.1088/1361-6544/aa9d5f
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63377
Winkler, M. (2018). Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Zeitschrift Für Angewandte Mathematik Und Physik, 69(2), Article 40. https://doi.org/10.1007/s00033-018-0935-8
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63375
Winkler, M. (2018). Does Fluid Interaction Affect Regularity in the Three-Dimensional Keller–Segel System with Saturated Sensitivity? Journal of Mathematical Fluid Mechanics, 20(4), 1889–1909. https://doi.org/10.1007/s00021-018-0395-0
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63381
Winkler, M. (2018). Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components. Journal of Evolution Equations, 18(3), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63380
Winkler, M. (2018). Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement. Journal of Differential Equations, 264(10), 6109–6151. https://doi.org/10.1016/j.jde.2018.01.027
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63376
Winkler, M. (2018). A critical blow-up exponent in a chemotaxis system with nonlinear signal production. Nonlinearity, 31(5), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 63382
Winkler, M., & Yokota, T. (2018). Stabilization in the logarithmic Keller–Segel system. Nonlinear Analysis, 170, 123–141. https://doi.org/10.1016/j.na.2018.01.002
LibreCat
| DOI
2017 | Journal Article | LibreCat-ID: 63371
HILLEN, T., PAINTER, K. J., & Winkler, M. (2017). Global solvability and explicit bounds for non-local adhesion models. European Journal of Applied Mathematics, 29(4), 645–684. https://doi.org/10.1017/s0956792517000328
LibreCat
| DOI