Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

66 Publications


2023 | Conference Paper | LibreCat-ID: 30125 | OA
Schaller, M., Worthmann, K., Philipp, F., Peitz, S., & Nüske, F. (2023). Towards reliable data-based optimal and predictive control using extended DMD. IFAC-PapersOnLine, 56(1), 169–174. https://doi.org/10.1016/j.ifacol.2023.02.029
LibreCat | DOI | Download (ext.) | arXiv
 

2023 | Preprint | LibreCat-ID: 46579 | OA
Peitz, S., Harder, H., Nüske, F., Philipp, F., Schaller, M., & Worthmann, K. (2023). Partial observations, coarse graining and equivariance in Koopman  operator theory for large-scale dynamical systems. In arXiv:2307.15325.
LibreCat | Download (ext.) | arXiv
 

2023 | Journal Article | LibreCat-ID: 23428 | OA
Nüske, F., Peitz, S., Philipp, F., Schaller, M., & Worthmann, K. (2023). Finite-data error bounds for Koopman-based prediction and control. Journal of Nonlinear Science, 33, Article 14. https://doi.org/10.1007/s00332-022-09862-1
LibreCat | DOI | Download (ext.)
 

2023 | Journal Article | LibreCat-ID: 21600
Dellnitz, M., Hüllermeier, E., Lücke, M., Ober-Blöbaum, S., Offen, C., Peitz, S., & Pfannschmidt, K. (2023). Efficient time stepping for numerical integration using reinforcement  learning. SIAM Journal on Scientific Computing, 45(2), A579–A595. https://doi.org/10.1137/21M1412682
LibreCat | Files available | DOI | Download (ext.) | arXiv
 

2023 | Journal Article | LibreCat-ID: 46784 | OA
Wallscheid, O., Peitz, S., Stenner, J., Weber, D., Boshoff, S., Meyer, M., Chidananda, V., & Schweins, O. (2023). ElectricGrid.jl - A Julia-based modeling and simulationtool for power electronics-driven electric energy grids. Journal of Open Source Software, 8(89), Article 5616. https://doi.org/10.21105/joss.05616
LibreCat | DOI | Download (ext.)
 

2023 | Conference Paper | LibreCat-ID: 46813 | OA
Wohlleben, M. C., Muth, L., Peitz, S., & Sextro, W. (2023). Transferability of a discrepancy model for the dynamics of electromagnetic oscillating circuits. Proceedings in Applied Mathematics and Mechanics. https://doi.org/10.1002/pamm.202300039
LibreCat | DOI | Download (ext.)
 

2022 | Book Chapter | LibreCat-ID: 16296 | OA
Banholzer, S., Gebken, B., Dellnitz, M., Peitz, S., & Volkwein, S. (2022). ROM-Based Multiobjective Optimization of Elliptic PDEs via Numerical Continuation. In H. Michael, H. Roland, K. Christian, U. Michael, & U. Stefan (Eds.), Non-Smooth and Complementarity-Based Distributed Parameter Systems (pp. 43–76). Springer. https://doi.org/10.1007/978-3-030-79393-7_3
LibreCat | DOI | Download (ext.)
 

2022 | Book Chapter | LibreCat-ID: 30294
Peitz, S., Dellnitz, M., & Bannenberg, S. (2022). Efficient Virtual Design and Testing of Autonomous Vehicles. In H. G. Bock, K.-H. Küfer, P. Maas, A. Milde, & V. Schulz (Eds.), German Success Stories in Industrial Mathematics (Vol. 35). Springer International Publishing. https://doi.org/10.1007/978-3-030-81455-7_23
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 29673 | OA
Klus, S., Nüske, F., & Peitz, S. (2022). Koopman analysis of quantum systems. Journal of Physics A: Mathematical and Theoretical, 55(31), 314002. https://doi.org/10.1088/1751-8121/ac7d22
LibreCat | DOI | Download (ext.) | arXiv
 

2022 | Preprint | LibreCat-ID: 33150 | OA
Berkemeier, M. B., & Peitz, S. (2022). Multi-Objective Trust-Region Filter Method for Nonlinear Constraints using Inexact Gradients. In arXiv:2208.12094.
LibreCat | Download (ext.) | arXiv
 

2022 | Journal Article | LibreCat-ID: 20731 | OA
Bieker, K., Gebken, B., & Peitz, S. (2022). On the Treatment of Optimization Problems with L1 Penalty Terms via Multiobjective Continuation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7797–7808. https://doi.org/10.1109/TPAMI.2021.3114962
LibreCat | Files available | DOI | Download (ext.)
 

2022 | Book Chapter | LibreCat-ID: 29727
Wohlleben, M. C., Bender, A., Peitz, S., & Sextro, W. (2022). Development of a Hybrid Modeling Methodology for Oscillating Systems with Friction. In Machine Learning, Optimization, and Data Science. Springer International Publishing. https://doi.org/10.1007/978-3-030-95470-3_8
LibreCat | DOI | Download (ext.)
 

2021 | Journal Article | LibreCat-ID: 21337 | OA
Berkemeier, M. B., & Peitz, S. (2021). Derivative-Free Multiobjective Trust Region Descent Method Using Radial  Basis Function Surrogate Models. Mathematical and Computational Applications, 26(2). https://doi.org/10.3390/mca26020031
LibreCat | DOI | Download (ext.)
 

2021 | Journal Article | LibreCat-ID: 16867 | OA
Gebken, B., & Peitz, S. (2021). An efficient descent method for locally Lipschitz multiobjective optimization problems. Journal of Optimization Theory and Applications, 188, 696–723. https://doi.org/10.1007/s10957-020-01803-w
LibreCat | DOI | Download (ext.)
 

2021 | Journal Article | LibreCat-ID: 16295 | OA
Gebken, B., & Peitz, S. (2021). Inverse multiobjective optimization: Inferring decision criteria from data. Journal of Global Optimization, 80, 3–29. https://doi.org/10.1007/s10898-020-00983-z
LibreCat | DOI | Download (ext.)
 

2021 | Journal Article | LibreCat-ID: 16294 | OA
Ober-Blöbaum, S., & Peitz, S. (2021). Explicit multiobjective model predictive control for nonlinear systems  with symmetries. International Journal of Robust and Nonlinear Control, 31(2), 380–403. https://doi.org/10.1002/rnc.5281
LibreCat | DOI | Download (ext.)
 

2020 | Book Chapter | LibreCat-ID: 17411
Flaßkamp, K., Ober-Blöbaum, S., & Peitz, S. (2020). Symmetry in Optimal Control: A Multiobjective Model Predictive Control Approach. In O. Junge, O. Schütze, G. Froyland, S. Ober-Blöbaum, & K. Padberg-Gehle (Eds.), Advances in Dynamics, Optimization and Computation. Cham: Springer. https://doi.org/10.1007/978-3-030-51264-4_9
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 10596
Schütze, O., Cuate, O., Martín, A., Peitz, S., & Dellnitz, M. (2020). Pareto Explorer: a global/local exploration tool for many-objective optimization problems. Engineering Optimization, 52(5), 832–855. https://doi.org/10.1080/0305215x.2019.1617286
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 16288
Klus, S., Nüske, F., Peitz, S., Niemann, J.-H., Clementi, C., & Schütte, C. (2020). Data-driven approximation of the Koopman generator: Model reduction, system identification, and control. Physica D: Nonlinear Phenomena, 406. https://doi.org/10.1016/j.physd.2020.132416
LibreCat | DOI
 

2020 | Book Chapter | LibreCat-ID: 16289
Peitz, S., & Klus, S. (2020). Feedback Control of Nonlinear PDEs Using Data-Efficient Reduced Order Models Based on the Koopman Operator. In Lecture Notes in Control and Information Sciences (Vol. 484, pp. 257–282). Cham: Springer. https://doi.org/10.1007/978-3-030-35713-9_10
LibreCat | DOI
 

Filters and Search Terms

(person=47427)

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed