Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
448 Publications
2023 | Conference Paper | LibreCat-ID: 51209
Hanselle, Jonas Manuel, et al. “Comparing Humans and Algorithms in Feature Ranking: A Case-Study in the Medical Domain.” LWDA’23: Learning, Knowledge, Data, Analysis. , edited by M Leyer and J Wichmann, 2023.
LibreCat
| Download (ext.)
2022 | Conference Paper | LibreCat-ID: 32311
Sharma, Arnab, et al. “Property-Driven Testing of Black-Box Functions.” Proceedings of the 10th IEEE/ACM International Conference on Formal Methods in Software Engineering (FormaliSE), IEEE, 2022, pp. 113–23.
LibreCat
2022 | Conference Paper | LibreCat-ID: 34542
Campagner, Andrea, et al. “Scikit-Weak: A Python Library for Weakly Supervised Machine Learning.” Lecture Notes in Computer Science, vol. 13633, Springer, 2022, pp. 57–70.
LibreCat
2022 | Preprint | LibreCat-ID: 31546 |

Lienen, Julian, et al. “Conformal Credal Self-Supervised Learning.” ArXiv:2205.15239, 2022.
LibreCat
| Download (ext.)
2022 | Journal Article | LibreCat-ID: 33090
Gevers, Karina, et al. “A Comparison of Heuristic, Statistical, and Machine Learning Methods for Heated Tool Butt Welding of Two Different Materials.” Welding in the World, Springer Science and Business Media LLC, 2022, doi:10.1007/s40194-022-01339-9.
LibreCat
| DOI
2022 | Report | LibreCat-ID: 36227
Hammer, Barbara, et al. Schlussbericht ITS.ML: Intelligente Technische Systeme der nächsten Generation durch Maschinelles Lernen. Forschungsvorhaben zur automatisierten Analyse von Daten mittels Maschinellen Lernens. 2022, doi:10.4119/unibi/2965622.
LibreCat
| DOI
2022 | Journal Article | LibreCat-ID: 48780
Muschalik, Maximilian, et al. “Agnostic Explanation of Model Change Based on Feature Importance.” KI - Künstliche Intelligenz, vol. 36, no. 3–4, Springer Science and Business Media LLC, 2022, pp. 211–24, doi:10.1007/s13218-022-00766-6.
LibreCat
| DOI
2021 | Journal Article | LibreCat-ID: 24143
Drees, Jan Peter, et al. “Automated Detection of Side Channels in Cryptographic Protocols: DROWN the ROBOTs!” 14th ACM Workshop on Artificial Intelligence and Security, 2021.
LibreCat
2021 | Journal Article | LibreCat-ID: 24148
Ramaswamy, Arunselvan, and Eyke Hüllermeier. “Deep Q-Learning: Theoretical Insights from an Asymptotic Analysis.” IEEE Transactions on Artificial Intelligence (to Appear), 2021.
LibreCat
2021 | Journal Article | LibreCat-ID: 21004
Wever, Marcel Dominik, et al. “AutoML for Multi-Label Classification: Overview and Empirical Evaluation.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, pp. 1–1, doi:10.1109/tpami.2021.3051276.
LibreCat
| DOI
2021 | Journal Article | LibreCat-ID: 21092
Mohr, Felix, et al. “Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning.” IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE.
LibreCat
2021 | Conference Paper | LibreCat-ID: 21570
Tornede, Tanja, et al. “Coevolution of Remaining Useful Lifetime Estimation Pipelines for Automated Predictive Maintenance.” Proceedings of the Genetic and Evolutionary Computation Conference, 2021.
LibreCat
2021 | Journal Article | LibreCat-ID: 21636
Lienen, Julian, and Eyke Hüllermeier. “Instance Weighting through Data Imprecisiation.” International Journal of Approximate Reasoning, Elsevier, 2021.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 21637 |

Lienen, Julian, and Eyke Hüllermeier. “From Label Smoothing to Label Relaxation.” Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI, vol. 35, no. 10, AAAI Press, 2021, pp. 8583–91.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 23779
Bernijazov, Ruslan, et al. “A Meta-Review on Artificial Intelligence in Product Creation.” Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-21), 2021.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 22280
Lienen, Julian, et al. “Monocular Depth Estimation via Listwise Ranking Using the Plackett-Luce Model.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 14595–604.
LibreCat
2021 | Preprint | LibreCat-ID: 22509 |

Lienen, Julian, and Eyke Hüllermeier. “Credal Self-Supervised Learning.” ArXiv:2106.11853, 2021.
LibreCat
| Download (ext.)