Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

448 Publications


2018 | Journal Article | LibreCat-ID: 3402
Melnikov, V., & Hüllermeier, E. (2018). On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. https://doi.org/10.1007/s10994-018-5733-1
LibreCat | Files available | DOI
 

2018 | Journal Article | LibreCat-ID: 3510 | OA
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning, 1495–1515. https://doi.org/10.1007/s10994-018-5735-z
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3552 | OA
Mohr, F., Wever, M. D., & Hüllermeier, E. (n.d.). Reduction Stumps for Multi-Class Classification. In Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. https://doi.org/10.1007/978-3-030-01768-2_19
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852 | OA
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In ICML 2018 AutoML Workshop. Stockholm, Sweden.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2109 | OA
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Ensembles of Evolved Nested Dichotomies for Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM. https://doi.org/10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 17713 | OA
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Automated Multi-Label Classification based on ML-Plan. Arxiv.
LibreCat | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 17714 | OA
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). Automated machine learning service composition.
LibreCat | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Discovery Science (pp. 161–175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C., … Yi, K. (Eds.). (2018). Research Directions for Principles of Data Management (Vol. 7, pp. 1–29).
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
Couso, I., & Hüllermeier, E. (2018). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In S. Mostaghim, A. Nürnberger, & C. Borgelt (Eds.), Frontiers in Computational Intelligence (pp. 31–46). Springer.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
Schäfer, D., & Hüllermeier, E. (2018). Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar, M., & Hüllermeier, E. (2018). Learning to Rank Based on Analogical Reasoning. In Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI) (pp. 2951–2958).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul, A., Hüllermeier, E., & Busa-Fekete, R. (2018). Ranking Distributions based on Noisy Sorting. Proc. 35th Int. Conference on Machine Learning (ICML), 3469–3477.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10149
Hesse, M., Timmermann, J., Hüllermeier, E., & Trächtler, A. (2018). A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24, 15–20.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10152
Mencia, E. L., Fürnkranz, J., Hüllermeier, E., & Rapp, M. (2018). Learning interpretable rules for multi-label classification. In H. Jair Escalante, S. Escalera, I. Guyon, X. Baro, Y. Güclüütürk, U. Güclü, & M. A. J. van Gerven (Eds.), Explainable and Interpretable Models in Computer Vision and Machine Learning (pp. 81–113). Springer.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen, V.-L., Destercke, S., Masson, M.-H., & Hüllermeier, E. (2018). Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI), 5089–5095.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. Proc. 21st Int. Conference on Discovery Science (DS), 161–175.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10276
Schäfer, D., & Hüllermeier, E. (2018). Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379 | OA
Seemann, N., Geierhos, M., Merten, M.-L., Tophinke, D., Wever, M. D., & Hüllermeier, E. (2018). Supporting the Cognitive Process in Annotation Tasks. In K. Eckart & D. Schlechtweg (Eds.), Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 22996
Hesse, M., Timmermann, J., Hüllermeier, E., & Trächtler, A. (2018). A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. Procedia Manufacturing, 24, 15–20.
LibreCat
 

Filters and Search Terms

(person=48129)

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed