Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

28 Publications


2023 | Book Chapter | LibreCat-ID: 45882 | OA
F. S. Bäumer, W.-F. Chen, M. Geierhos, J. Kersting, and H. Wachsmuth, “Dialogue-based Requirement Compensation and Style-adjusted Data-to-text Generation,” in On-The-Fly Computing -- Individualized IT-services in dynamic markets, vol. 412, C.-J. Haake, F. Meyer auf der Heide, M. Platzner, H. Wachsmuth, and H. Wehrheim, Eds. Paderborn: Heinz Nixdorf Institut, Universität Paderborn, 2023, pp. 65–84.
LibreCat | Files available | DOI
 

2022 | Conference Paper | LibreCat-ID: 33274
W.-F. Chen, M.-H. Chen, G. Mudgal, and H. Wachsmuth, “Analyzing Culture-Specific Argument Structures in Learner Essays,” in Proceedings of the 9th Workshop on Argument Mining (ArgMining 2022), 2022, pp. 51–61.
LibreCat
 

2022 | Conference Abstract | LibreCat-ID: 31068
M.-H. Chen, G. Mudgal, W.-F. Chen, and H. Wachsmuth, “Investigating the argumentation structures of EFL learners from diverse language backgrounds,” 2022.
LibreCat
 

2021 | Conference Paper | LibreCat-ID: 21178
M. Alshomary, W.-F. Chen, T. Gurcke, and H. Wachsmuth, “Belief-based Generation of Argumentative Claims,” in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, Online, 2021, pp. 224–223.
LibreCat | Download (ext.)
 

2021 | Conference Paper | LibreCat-ID: 23709
W.-F. Chen, K. Al Khatib, B. Stein, and H. Wachsmuth, “Controlled Neural Sentence-Level Reframing of News Articles,” in Findings of the Association for Computational Linguistics: EMNLP 2021, 2021, pp. 2683–2693.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 3776
W.-F. Chen, K. Al-Khatib, H. Wachsmuth, and B. Stein, “Analyzing Political Bias and Unfairness in News Articles at Different Levels of Granularity,” in Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science, 2020, pp. 149–154.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 20137
S. Syed, W.-F. Chen, M. Hagen, B. Stein, H. Wachsmuth, and M. Potthast, “Task Proposal: Abstractive Snippet Generation for Web Pages,” in Proceedings of the 13th International Conference on Natural Language Generation (INLG 2020), 2020, pp. 237–241.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 3818
W.-F. Chen, K. Al-Khatib, B. Stein, and H. Wachsmuth, “Detecting Media Bias in News Articles using Gaussian Bias Distributions,” in Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 4290–4300.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 15826
W.-F. Chen, S. Syed, B. Stein, M. Hagen, and M. Potthast, “Abstractive Snippet Generation,” in Proceedings of the Web Conference 2020, 2020, pp. 1309–1319.
LibreCat | Download (ext.)
 

2019 | Conference Paper | LibreCat-ID: 13259
W.-F. Chen, K. Al-Khatib, M. Hagen, H. Wachsmuth, and B. Stein, “Unraveling the Search Space of Abusive Language in Wikipedia with Dynamic Lexicon Acquisition,” in Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom, 2019, pp. 76–82.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 14886
W.-F. Chen and L.-W. Ku, “We Like, We Post: A Joint User-Post Approach for Facebook Post Stance Labeling,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 10, pp. 2013–2023, 2018.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 14887
M.-H. Chen, W.-F. Chen, and L.-W. Ku, “Application of Sentiment Analysis to Language Learning,” IEEE Access, vol. 6, pp. 24433–24442, 2018.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 14888
Chen W.-F. and Ku L.-W., “中文情感語意分析套件 CSentiPackage 發展與應用,” 圖書館學與資訊科學, 2018.
LibreCat | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 11710
W.-F. Chen, H. Wachsmuth, K. Al Khatib, and B. Stein, “Learning to Flip the Bias of News Headlines,” in Proceedings of the 11th International Conference on Natural Language Generation, 2018, pp. 79–88.
LibreCat | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 14873
W.-F. Chen, M. Hagen, B. Stein, and M. Potthast, “A User Study on Snippet Generation: Text Reuse vs. Paraphrases,” in Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018, pp. 1033–1036.
LibreCat | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 14885
M. Potthast, W.-F. Chen, M. Hagen, and B. Stein, “A Plan for Ancillary Copyright: Original Snippets.,” in Proceedings of the Second International Workshop on Recent Trends in News Information Retrieval, 2018, pp. 3–5.
LibreCat | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 3751
Y. Ajjour, W.-F. Chen, J. Kiesel, H. Wachsmuth, and B. Stein, “Unit Segmentation of Argumentative Texts,” in Proceedings of the 4th Workshop on Argument Mining, 2017, pp. 118–128.
LibreCat | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 14884
W.-F. Chen, Y.-P. Chen, and L.-W. Ku, “How to Get Endorsements? Predicting Facebook Likes Using Post Content and User Engagement,” in International Conference on HCI in Business, Government, and Organizations, 2017, pp. 190–202.
LibreCat | Download (ext.)
 

2016 | Conference Paper | LibreCat-ID: 14881
W.-F. Chen and L.-W. Ku, “UTCNN: a Deep Learning Model of Stance Classification on Social Media Text,” in Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics, 2016, pp. 1635–1645.
LibreCat | Download (ext.)
 

2016 | Conference Paper | LibreCat-ID: 14882
W.-F. Chen, F.-Y. Lin, and L.-W. Ku, “WordForce: Visualizing Controversial Words in Debates,” in Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations, 2016, pp. 273–277.
LibreCat | Download (ext.)
 

Filters and Search Terms

(person=82920)

status=public

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed