Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

448 Publications


2019 | Conference Paper | LibreCat-ID: 15011 | OA
Tornede, A., Wever, M. D., & Hüllermeier, E. (2019). Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019 (pp. 135–146). Dortmund: KIT Scientific Publishing, Karlsruhe.
LibreCat | Files available
 

2019 | Conference Paper | LibreCat-ID: 15013
Brinker, K., & Hüllermeier, E. (2019). A Reduction of Label Ranking to Multiclass Classification. In Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases. Würzburg, Germany.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 15014
Hüllermeier, E., Couso, I., & Diestercke, S. (2019). Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants. In Proceedings SUM 2019, International Conference on Scalable Uncertainty Management.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15015
Henzgen, S., & Hüllermeier, E. (2019). Mining Rank Data. ACM Transactions on Knowledge Discovery from Data, 1–36. https://doi.org/10.1145/3363572
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14027
Bengs, V., Eulert, M., & Holzmann, H. (2019). Asymptotic confidence sets for the jump curve in bivariate regression problems. Journal of Multivariate Analysis, 291–312. https://doi.org/10.1016/j.jmva.2019.02.017
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14028
Bengs, V., & Holzmann, H. (2019). Adaptive confidence sets for kink estimation. Electronic Journal of Statistics, 1523–1579. https://doi.org/10.1214/19-ejs1555
LibreCat | DOI
 

2019 | Conference Abstract | LibreCat-ID: 13132
Mohr, F., Wever, M. D., Tornede, A., & Hüllermeier, E. (2019). From Automated to On-The-Fly Machine Learning. In INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (pp. 273–274). Bonn: Gesellschaft für Informatik e.V.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 10232 | OA
Wever, M. D., Mohr, F., Tornede, A., & Hüllermeier, E. (2019). Automating Multi-Label Classification Extending ML-Plan. Presented at the 6th ICML Workshop on Automated Machine Learning (AutoML 2019), Long Beach, CA, USA.
LibreCat | Files available
 

2018 | Conference Paper | LibreCat-ID: 2479 | OA
Mohr, F., Wever, M. D., Hüllermeier, E., & Faez, A. (2018). (WIP) Towards the Automated Composition of Machine Learning Services. In SCC. San Francisco, CA, USA: IEEE. https://doi.org/10.1109/SCC.2018.00039
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 19524
Pfannschmidt, K., Gupta, P., & Hüllermeier, E. (2018). Deep Architectures for Learning Context-dependent Ranking Functions. ArXiv:1803.05796.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857 | OA
Mohr, F., Lettmann, T., Hüllermeier, E., & Wever, M. D. (2018). Programmatic Task Network Planning. In Proceedings of the 1st ICAPS Workshop on Hierarchical Planning (pp. 31–39). Delft, Netherlands: AAAI.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 24150
Ramaswamy, A., & Bhatnagar, S. (2018). Stability of stochastic approximations with “controlled markov” noise and temporal difference learning. IEEE Transactions on Automatic Control, 64(6), 2614–2620.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 24151
Demirel, B., Ramaswamy, A., Quevedo, D. E., & Karl, H. (2018). Deepcas: A deep reinforcement learning algorithm for control-aware scheduling. IEEE Control Systems Letters, 2(4), 737–742.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2471 | OA
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). On-The-Fly Service Construction with Prototypes. In SCC. San Francisco, CA, USA: IEEE Computer Society. https://doi.org/10.1109/SCC.2018.00036
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3402
Melnikov, V., & Hüllermeier, E. (2018). On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. https://doi.org/10.1007/s10994-018-5733-1
LibreCat | Files available | DOI
 

2018 | Journal Article | LibreCat-ID: 3510 | OA
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning, 1495–1515. https://doi.org/10.1007/s10994-018-5735-z
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3552 | OA
Mohr, F., Wever, M. D., & Hüllermeier, E. (n.d.). Reduction Stumps for Multi-Class Classification. In Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. https://doi.org/10.1007/978-3-030-01768-2_19
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852 | OA
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In ICML 2018 AutoML Workshop. Stockholm, Sweden.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2109 | OA
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Ensembles of Evolved Nested Dichotomies for Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM. https://doi.org/10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 17713 | OA
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Automated Multi-Label Classification based on ML-Plan. Arxiv.
LibreCat | Download (ext.)
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed