Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

448 Publications


2018 | Preprint | LibreCat-ID: 17714 | OA
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). Automated machine learning service composition.
LibreCat | Download (ext.)
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
Graf, H. (2018). Ranking of Classification Algorithms in AutoML. Universität Paderborn.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl, M. (2018). Learning about learning curves from dataset properties. Universität Paderborn.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Discovery Science (pp. 161–175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C., … Yi, K. (Eds.). (2018). Research Directions for Principles of Data Management (Vol. 7, pp. 1–29).
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
Couso, I., & Hüllermeier, E. (2018). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In S. Mostaghim, A. Nürnberger, & C. Borgelt (Eds.), Frontiers in Computational Intelligence (pp. 31–46). Springer.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
Schäfer, D., & Hüllermeier, E. (2018). Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar, M., & Hüllermeier, E. (2018). Learning to Rank Based on Analogical Reasoning. In Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI) (pp. 2951–2958).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul, A., Hüllermeier, E., & Busa-Fekete, R. (2018). Ranking Distributions based on Noisy Sorting. Proc. 35th Int. Conference on Machine Learning (ICML), 3469–3477.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10149
Hesse, M., Timmermann, J., Hüllermeier, E., & Trächtler, A. (2018). A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24, 15–20.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10152
Mencia, E. L., Fürnkranz, J., Hüllermeier, E., & Rapp, M. (2018). Learning interpretable rules for multi-label classification. In H. Jair Escalante, S. Escalera, I. Guyon, X. Baro, Y. Güclüütürk, U. Güclü, & M. A. J. van Gerven (Eds.), Explainable and Interpretable Models in Computer Vision and Machine Learning (pp. 81–113). Springer.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen, V.-L., Destercke, S., Masson, M.-H., & Hüllermeier, E. (2018). Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI), 5089–5095.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. Proc. 21st Int. Conference on Discovery Science (DS), 161–175.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10276
Schäfer, D., & Hüllermeier, E. (2018). Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379 | OA
Seemann, N., Geierhos, M., Merten, M.-L., Tophinke, D., Wever, M. D., & Hüllermeier, E. (2018). Supporting the Cognitive Process in Annotation Tasks. In K. Eckart & D. Schlechtweg (Eds.), Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft. Stuttgart, Germany.
LibreCat | Files available | Download (ext.)
 

2017 | Journal Article | LibreCat-ID: 24152
Ramaswamy, A., & Bhatnagar, S. (2017). Analysis of gradient descent methods with nondiminishing bounded errors. IEEE Transactions on Automatic Control, 63(5), 1465–1471.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 24153
Ramaswamy, A., & Bhatnagar, S. (2017). A generalization of the Borkar-Meyn theorem for stochastic recursive inclusions. Mathematics of Operations Research, 42(3), 648–661.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 3325
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics. In Proceedings. 27. Workshop Computational Intelligence, Dortmund, 23. - 24. November 2017. KIT Scientific Publishing. https://doi.org/10.5445/KSP/1000074341
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 115
Jakobs, M.-C., Krämer, J., van Straaten, D., & Lettmann, T. (2017). Certification Matters for Service Markets. In T. P. Marcelo De Barros, Janusz Klink,Tadeus Uhl (Ed.), The Ninth International Conferences on Advanced Service Computing (SERVICE COMPUTATION) (pp. 7–12).
LibreCat | Files available
 

2017 | Conference Paper | LibreCat-ID: 1158
Seemann, N., Merten, M.-L., Geierhos, M., Tophinke, D., & Hüllermeier, E. (2017). Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low German. In Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (pp. 40–45). Stroudsburg, PA, USA: Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/W17-2206
LibreCat | DOI
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed