Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

449 Publications


2018 | Conference Paper | LibreCat-ID: 2479 | OA
Mohr F, Wever MD, Hüllermeier E, Faez A. (WIP) Towards the Automated Composition of Machine Learning Services. In: SCC. San Francisco, CA, USA: IEEE; 2018. doi:10.1109/SCC.2018.00039
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 19524
Pfannschmidt K, Gupta P, Hüllermeier E. Deep Architectures for Learning Context-dependent Ranking Functions. arXiv:180305796. 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857 | OA
Mohr F, Lettmann T, Hüllermeier E, Wever MD. Programmatic Task Network Planning. In: Proceedings of the 1st ICAPS Workshop on Hierarchical Planning. AAAI; 2018:31-39.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 24150
Ramaswamy A, Bhatnagar S. Stability of stochastic approximations with “controlled markov” noise and temporal difference learning. IEEE Transactions on Automatic Control. 2018;64(6):2614-2620.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 24151
Demirel B, Ramaswamy A, Quevedo DE, Karl H. Deepcas: A deep reinforcement learning algorithm for control-aware scheduling. IEEE Control Systems Letters. 2018;2(4):737-742.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2471 | OA
Mohr F, Wever MD, Hüllermeier E. On-The-Fly Service Construction with Prototypes. In: SCC. San Francisco, CA, USA: IEEE Computer Society; 2018. doi:10.1109/SCC.2018.00036
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3402
Melnikov V, Hüllermeier E. On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. 2018. doi:10.1007/s10994-018-5733-1
LibreCat | Files available | DOI
 

2018 | Journal Article | LibreCat-ID: 3510 | OA
Mohr F, Wever MD, Hüllermeier E. ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning. Published online 2018:1495-1515. doi:10.1007/s10994-018-5735-z
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3552 | OA
Mohr F, Wever MD, Hüllermeier E. Reduction Stumps for Multi-Class Classification. In: Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. doi:10.1007/978-3-030-01768-2_19
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852 | OA
Wever MD, Mohr F, Hüllermeier E. ML-Plan for Unlimited-Length Machine Learning Pipelines. In: ICML 2018 AutoML Workshop. ; 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2109 | OA
Wever MD, Mohr F, Hüllermeier E. Ensembles of Evolved Nested Dichotomies for Classification. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM; 2018. doi:10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 17713 | OA
Wever MD, Mohr F, Hüllermeier E. Automated Multi-Label Classification based on ML-Plan. Published online 2018.
LibreCat | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 17714 | OA
Mohr F, Wever MD, Hüllermeier E. Automated machine learning service composition. Published online 2018.
LibreCat | Download (ext.)
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
Graf H. Ranking of Classification Algorithms in AutoML. Universität Paderborn; 2018.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl M. Learning about Learning Curves from Dataset Properties. Universität Paderborn; 2018.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer D, Hüllermeier E. Preference-Based Reinforcement Learning Using Dyad Ranking. In: Discovery Science. Cham: Springer International Publishing; 2018:161-175. doi:10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul S, Arenas M, Barceló P, et al., eds. Research Directions for Principles of Data Management. Vol 7.; 2018:1-29.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
Couso I, Hüllermeier E. Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In: Mostaghim S, Nürnberger A, Borgelt C, eds. Frontiers in Computational Intelligence. Springer; 2018:31-46.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
Schäfer D, Hüllermeier E. Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning. 2018;107(5):903-941.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar M, Hüllermeier E. Learning to Rank Based on Analogical Reasoning. In: Proc. 32 Nd AAAI Conference on Artificial Intelligence (AAAI). ; 2018:2951-2958.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul A, Hüllermeier E, Busa-Fekete R. Ranking Distributions based on Noisy Sorting. In: Proc. 35th Int. Conference on Machine Learning (ICML). Verlagsschriftenreihe des Heinz Nixdorf Instituts, Paderborn. Verlagsschriftenreihe des Heinz Nixdorf Instituts, Paderborn; 2018:3469-3477.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10149
Hesse M, Timmermann J, Hüllermeier E, Trächtler A. A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. In: Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24. ; 2018:15-20.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10152
Mencia EL, Fürnkranz J, Hüllermeier E, Rapp M. Learning interpretable rules for multi-label classification. In: Jair Escalante H, Escalera S, Guyon I, et al., eds. Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer; 2018:81-113.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen V-L, Destercke S, Masson M-H, Hüllermeier E. Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. In: Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI). ; 2018:5089-5095.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer D, Hüllermeier E. Preference-Based Reinforcement Learning Using Dyad Ranking. In: Proc. 21st Int. Conference on Discovery Science (DS). ; 2018:161-175.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10276
Schäfer D, Hüllermeier E. Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning. 2018;107(5):903-941.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379 | OA
Seemann N, Geierhos M, Merten M-L, Tophinke D, Wever MD, Hüllermeier E. Supporting the Cognitive Process in Annotation Tasks. In: Eckart K, Schlechtweg D, eds. Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft. ; 2018.
LibreCat | Files available | Download (ext.)
 

2017 | Journal Article | LibreCat-ID: 24152
Ramaswamy A, Bhatnagar S. Analysis of gradient descent methods with nondiminishing bounded errors. IEEE Transactions on Automatic Control. 2017;63(5):1465-1471.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 24153
Ramaswamy A, Bhatnagar S. A generalization of the Borkar-Meyn theorem for stochastic recursive inclusions. Mathematics of Operations Research. 2017;42(3):648-661.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 3325
Melnikov V, Hüllermeier E. Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics. In: Proceedings. 27. Workshop Computational Intelligence, Dortmund, 23. - 24. November 2017. KIT Scientific Publishing; 2017. doi:10.5445/KSP/1000074341
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 115
Jakobs M-C, Krämer J, van Straaten D, Lettmann T. Certification Matters for Service Markets. In: Marcelo De Barros, Janusz Klink,Tadeus Uhl TP, ed. The Ninth International Conferences on Advanced Service Computing (SERVICE COMPUTATION). ; 2017:7-12.
LibreCat | Files available
 

2017 | Conference Paper | LibreCat-ID: 1158
Seemann N, Merten M-L, Geierhos M, Tophinke D, Hüllermeier E. Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low German. In: Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature. Stroudsburg, PA, USA: Association for Computational Linguistics (ACL); 2017:40-45. doi:10.18653/v1/W17-2206
LibreCat | DOI
 

2017 | Bachelorsthesis | LibreCat-ID: 5694
Schnitker NN. Genetischer Algorithmus zur Erstellung von Ensembles von Nested Dichotomies. Universität Paderborn; 2017.
LibreCat
 

2017 | Conference Abstract | LibreCat-ID: 5722
Gupta P, Hetzer A, Tornede T, et al. jPL: A Java-based Software Framework for Preference Learning. In: ; 2017.
LibreCat
 

2017 | Mastersthesis | LibreCat-ID: 5724
Hetzer A, Tornede T. Solving the Container Pre-Marshalling Problem Using Reinforcement Learning and Structured Output Prediction. Universität Paderborn; 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 71
Czech M, Hüllermeier E, Jakobs M-C, Wehrheim H. Predicting Rankings of Software Verification Tools. In: Proceedings of the 3rd International Workshop on Software Analytics. SWAN’17. ; 2017:23-26. doi:10.1145/3121257.3121262
LibreCat | Files available | DOI
 

2017 | Report | LibreCat-ID: 72
Czech M, Hüllermeier E, Jakobs M-C, Wehrheim H. Predicting Rankings of Software Verification Competitions.; 2017.
LibreCat | Files available
 

2017 | Encyclopedia Article | LibreCat-ID: 10589
Fürnkranz J, Hüllermeier E. Preference Learning. In: Encyclopedia of Machine Learning and Data Mining. ; 2017:1000-1005.
LibreCat
 

2017 | Book Chapter | LibreCat-ID: 10784
Fürnkranz J, Hüllermeier E. Preference Learning. In: Sammut C, Webb GI, eds. Encyclopedia of Machine Learning and Data Mining. Vol 107. Springer; 2017:1000-1005.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1180 | OA
Wever MD, Mohr F, Hüllermeier E. Automatic Machine Learning: Hierachical Planning Versus Evolutionary Optimization. In: 27th Workshop Computational Intelligence. Dortmund; 2017.
LibreCat | Files available | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 15397
Melnikov V, Hüllermeier E. Optimizing the structure of nested dichotomies. A comparison of two heuristics. In: Hoffmann F, Hüllermeier E, Mikut R, eds. In Proceedings 27th Workshop Computational Intelligence, Dortmund Germany. KIT Scientific Publishing; 2017:1-12.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15399
Czech M, Hüllermeier E, Jacobs MC, Wehrheim H. Predicting rankings of software verification tools. In: In Proceedings ESEC/FSE Workshops 2017 - 3rd ACM SIGSOFT, International Workshop on Software Analytics (SWAN 2017), Paderborn Germany. ; 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15110
Couso I, Dubois D, Hüllermeier E. Maximum likelihood estimation and coarse data. In: In Proceedings SUM 2017, 11th International Conference on Scalable Uncertainty Management, Granada, Spain. Springer; 2017:3-16.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10204
Ewerth R, Springstein M, Müller E, et al. Estimating relative depth in single images via rankboost. In: Proc. IEEE Int. Conf. on Multimedia and Expo (ICME 2017). ; 2017:919-924.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10205
Ahmadi Fahandar M, Hüllermeier E, Couso I. Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent  Coarsening. In: Proc. 34th Int. Conf. on Machine Learning (ICML 2017). ; 2017:1078-1087.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10206 | OA
Mohr F, Lettmann T, Hüllermeier E. Planning with Independent Task Networks. In: Proc. 40th Annual German Conference on Advances in Artificial Intelligence (KI 2017). ; 2017:193-206. doi:10.1007/978-3-319-67190-1_15
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 10207
Czech M, Hüllermeier E, Jakobs M-C, Wehrheim H. Predicting rankings of software verification tools. In: Proc. 3rd ACM SIGSOFT Int. I Workshop on Software Analytics (SWAN@ESEC/SIGSOFT FSE 2017. ; 2017:23-26.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10208
Couso I, Dubois D, Hüllermeier E. Maximum Likelihood Estimation and Coarse Data. In: Proc. 11th Int. Conf. on Scalable Uncertainty Management (SUM 2017). ; 2017:3-16.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10209
Ahmadi Fahandar M, Hüllermeier E. Learning to Rank based on Analogical Reasoning. In: Proc. AAAI 2017, 32nd AAAI Conference on Artificial Intelligence. ; 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10212
Hoffmann F, Hüllermeier E, Mikut R. (Hrsg.) Proceedings 27. Workshop Computational Intelligence, KIT Scientific Publishing, Karlsruhe, Germany 2017. In: ; 2017.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed