Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
449 Publications
2018 | Conference Paper | LibreCat-ID: 2479 |
F. Mohr, M. D. Wever, E. Hüllermeier, and A. Faez, “(WIP) Towards the Automated Composition of Machine Learning Services,” in SCC, San Francisco, CA, USA, 2018.
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Preprint | LibreCat-ID: 19524
K. Pfannschmidt, P. Gupta, and E. Hüllermeier, “Deep Architectures for Learning Context-dependent Ranking Functions,” arXiv:1803.05796. 2018.
LibreCat
2018 | Conference Paper | LibreCat-ID: 2857 |
F. Mohr, T. Lettmann, E. Hüllermeier, and M. D. Wever, “Programmatic Task Network Planning,” in Proceedings of the 1st ICAPS Workshop on Hierarchical Planning, Delft, Netherlands, 2018, pp. 31–39.
LibreCat
| Files available
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 24150
A. Ramaswamy and S. Bhatnagar, “Stability of stochastic approximations with ‘controlled markov’ noise and temporal difference learning,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2614–2620, 2018.
LibreCat
2018 | Journal Article | LibreCat-ID: 24151
B. Demirel, A. Ramaswamy, D. E. Quevedo, and H. Karl, “Deepcas: A deep reinforcement learning algorithm for control-aware scheduling,” IEEE Control Systems Letters, vol. 2, no. 4, pp. 737–742, 2018.
LibreCat
2018 | Conference Paper | LibreCat-ID: 2471 |
F. Mohr, M. D. Wever, and E. Hüllermeier, “On-The-Fly Service Construction with Prototypes,” in SCC, San Francisco, CA, USA, 2018.
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 3402
V. Melnikov and E. Hüllermeier, “On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis,” Machine Learning, 2018.
LibreCat
| Files available
| DOI
2018 | Journal Article | LibreCat-ID: 3510 |
F. Mohr, M. D. Wever, and E. Hüllermeier, “ML-Plan: Automated Machine Learning via Hierarchical Planning,” Machine Learning, pp. 1495–1515, 2018, doi: 10.1007/s10994-018-5735-z.
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 3552 |
F. Mohr, M. D. Wever, and E. Hüllermeier, “Reduction Stumps for Multi-Class Classification,” in Proceedings of the Symposium on Intelligent Data Analysis, ‘s-Hertogenbosch, the Netherlands.
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 3852 |
M. D. Wever, F. Mohr, and E. Hüllermeier, “ML-Plan for Unlimited-Length Machine Learning Pipelines,” in ICML 2018 AutoML Workshop, Stockholm, Sweden, 2018.
LibreCat
| Files available
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 2109 |
M. D. Wever, F. Mohr, and E. Hüllermeier, “Ensembles of Evolved Nested Dichotomies for Classification,” in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, Kyoto, Japan, 2018.
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Preprint | LibreCat-ID: 17713 |
M. D. Wever, F. Mohr, and E. Hüllermeier, “Automated Multi-Label Classification based on ML-Plan.” Arxiv, 2018.
LibreCat
| Download (ext.)
2018 | Preprint | LibreCat-ID: 17714 |
F. Mohr, M. D. Wever, and E. Hüllermeier, “Automated machine learning service composition.” 2018.
LibreCat
| Download (ext.)
2018 | Bachelorsthesis | LibreCat-ID: 5693
H. Graf, Ranking of Classification Algorithms in AutoML. Universität Paderborn, 2018.
LibreCat
2018 | Bachelorsthesis | LibreCat-ID: 5936
M. Scheibl, Learning about learning curves from dataset properties. Universität Paderborn, 2018.
LibreCat
2018 | Book Chapter | LibreCat-ID: 6423
D. Schäfer and E. Hüllermeier, “Preference-Based Reinforcement Learning Using Dyad Ranking,” in Discovery Science, Cham: Springer International Publishing, 2018, pp. 161–175.
LibreCat
| Files available
| DOI
2018 | Conference (Editor) | LibreCat-ID: 10591
S. Abiteboul et al., Eds., Research Directions for Principles of Data Management, vol. 7, no. 1. 2018, pp. 1–29.
LibreCat
2018 | Book Chapter | LibreCat-ID: 10783
I. Couso and E. Hüllermeier, “Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators,” in Frontiers in Computational Intelligence, S. Mostaghim, A. Nürnberger, and C. Borgelt, Eds. Springer, 2018, pp. 31–46.
LibreCat
2018 | Journal Article | LibreCat-ID: 16038
D. Schäfer and E. Hüllermeier, “Dyad ranking using Plackett-Luce models based on joint feature representations,” Machine Learning, vol. 107, no. 5, pp. 903–941, 2018.
LibreCat
2018 | Conference Paper | LibreCat-ID: 10145
M. Ahmadi Fahandar and E. Hüllermeier, “Learning to Rank Based on Analogical Reasoning,” in Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI), 2018, pp. 2951–2958.
LibreCat