Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
449 Publications
2018 | Conference Paper | LibreCat-ID: 2479 |
Mohr F, Wever MD, Hüllermeier E, Faez A. (WIP) Towards the Automated Composition of Machine Learning Services. In: SCC. San Francisco, CA, USA: IEEE; 2018. doi:10.1109/SCC.2018.00039
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Preprint | LibreCat-ID: 19524
Pfannschmidt K, Gupta P, Hüllermeier E. Deep Architectures for Learning Context-dependent Ranking Functions. arXiv:180305796. 2018.
LibreCat
2018 | Conference Paper | LibreCat-ID: 2857 |
Mohr F, Lettmann T, Hüllermeier E, Wever MD. Programmatic Task Network Planning. In: Proceedings of the 1st ICAPS Workshop on Hierarchical Planning. AAAI; 2018:31-39.
LibreCat
| Files available
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 24150
Ramaswamy A, Bhatnagar S. Stability of stochastic approximations with “controlled markov” noise and temporal difference learning. IEEE Transactions on Automatic Control. 2018;64(6):2614-2620.
LibreCat
2018 | Journal Article | LibreCat-ID: 24151
Demirel B, Ramaswamy A, Quevedo DE, Karl H. Deepcas: A deep reinforcement learning algorithm for control-aware scheduling. IEEE Control Systems Letters. 2018;2(4):737-742.
LibreCat
2018 | Conference Paper | LibreCat-ID: 2471 |
Mohr F, Wever MD, Hüllermeier E. On-The-Fly Service Construction with Prototypes. In: SCC. San Francisco, CA, USA: IEEE Computer Society; 2018. doi:10.1109/SCC.2018.00036
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 3402
Melnikov V, Hüllermeier E. On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. 2018. doi:10.1007/s10994-018-5733-1
LibreCat
| Files available
| DOI
2018 | Journal Article | LibreCat-ID: 3510 |
Mohr F, Wever MD, Hüllermeier E. ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning. Published online 2018:1495-1515. doi:10.1007/s10994-018-5735-z
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 3552 |
Mohr F, Wever MD, Hüllermeier E. Reduction Stumps for Multi-Class Classification. In: Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. doi:10.1007/978-3-030-01768-2_19
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 3852 |
Wever MD, Mohr F, Hüllermeier E. ML-Plan for Unlimited-Length Machine Learning Pipelines. In: ICML 2018 AutoML Workshop. ; 2018.
LibreCat
| Files available
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 2109 |
Wever MD, Mohr F, Hüllermeier E. Ensembles of Evolved Nested Dichotomies for Classification. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM; 2018. doi:10.1145/3205455.3205562
LibreCat
| Files available
| DOI
| Download (ext.)
2018 | Preprint | LibreCat-ID: 17713 |
Wever MD, Mohr F, Hüllermeier E. Automated Multi-Label Classification based on ML-Plan. Published online 2018.
LibreCat
| Download (ext.)
2018 | Preprint | LibreCat-ID: 17714 |
Mohr F, Wever MD, Hüllermeier E. Automated machine learning service composition. Published online 2018.
LibreCat
| Download (ext.)
2018 | Bachelorsthesis | LibreCat-ID: 5693
Graf H. Ranking of Classification Algorithms in AutoML. Universität Paderborn; 2018.
LibreCat
2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl M. Learning about Learning Curves from Dataset Properties. Universität Paderborn; 2018.
LibreCat
2018 | Book Chapter | LibreCat-ID: 6423
Schäfer D, Hüllermeier E. Preference-Based Reinforcement Learning Using Dyad Ranking. In: Discovery Science. Cham: Springer International Publishing; 2018:161-175. doi:10.1007/978-3-030-01771-2_11
LibreCat
| Files available
| DOI
2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul S, Arenas M, Barceló P, et al., eds. Research Directions for Principles of Data Management. Vol 7.; 2018:1-29.
LibreCat
2018 | Book Chapter | LibreCat-ID: 10783
Couso I, Hüllermeier E. Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In: Mostaghim S, Nürnberger A, Borgelt C, eds. Frontiers in Computational Intelligence. Springer; 2018:31-46.
LibreCat
2018 | Journal Article | LibreCat-ID: 16038
Schäfer D, Hüllermeier E. Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning. 2018;107(5):903-941.
LibreCat
2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar M, Hüllermeier E. Learning to Rank Based on Analogical Reasoning. In: Proc. 32 Nd AAAI Conference on Artificial Intelligence (AAAI). ; 2018:2951-2958.
LibreCat