Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
5928 Publications
2018 | Journal Article | LibreCat-ID: 14887
Chen, M.-H., Chen, W.-F., & Ku, L.-W. (2018). Application of Sentiment Analysis to Language Learning. IEEE Access, 6, 24433–24442.
LibreCat
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 14888
Chen W.-F., & Ku L.-W. (2018). 中文情感語意分析套件 CSentiPackage 發展與應用. 圖書館學與資訊科學.
LibreCat
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 15081
Böttcher, S., & Hartel, R. (2018). RECUT: RE-Compressing partially Unordered Trees. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 3996–4005). https://doi.org/10.1109/bigdata.2018.8622261
LibreCat
| DOI
2018 | Conference Paper | LibreCat-ID: 15082
Dunst, A., & Hartel, R. (2018). Automated Genre and Author Distinction in Comics: Towards a Stylometry for Visual Narrative. In Digital Humanities 2018: Book of Abstracts/Libro de resúmenes (pp. 184–187). Red de Humanidades Digitales AC.
LibreCat
2018 | Book Chapter | LibreCat-ID: 15160
Dunst, A., & Hartel, R. (2018). The quantitative analysis of comics: Towards a visual stylometry of graphic narrative. In A. Dunst, J. Laubrock, & J. Wildfeuer (Eds.), Empirical Comics Research: Digital, Multimodal, and Cognitive Methods (pp. 43–61). Routledge.
LibreCat
2018 | Conference Abstract | LibreCat-ID: 15183
Dunst, A., & Hartel, R. (2018). Auf dem Weg zur Visuellen Stilometrie:Automatische Genre- und Autorunterscheidung in graphischen Narrativen. In DHd Konferenz 2018, Kritik der digitalen Vernunft, DHd 2018.
LibreCat
2018 | Journal Article | LibreCat-ID: 16038
Schäfer, D., & Hüllermeier, E. (2018). Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
2018 | Book Chapter | LibreCat-ID: 16392
Feldkord, B., Malatyali, M., & Meyer auf der Heide, F. (2018). A Dynamic Distributed Data Structure for Top-k and k-Select Queries. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Cham. https://doi.org/10.1007/978-3-319-98355-4_18
LibreCat
| DOI
2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar, M., & Hüllermeier, E. (2018). Learning to Rank Based on Analogical Reasoning. In Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI) (pp. 2951–2958).
LibreCat
2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul, A., Hüllermeier, E., & Busa-Fekete, R. (2018). Ranking Distributions based on Noisy Sorting. Proc. 35th Int. Conference on Machine Learning (ICML), 3469–3477.
LibreCat
2018 | Conference Paper | LibreCat-ID: 10149
Hesse, M., Timmermann, J., Hüllermeier, E., & Trächtler, A. (2018). A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24, 15–20.
LibreCat
2018 | Book Chapter | LibreCat-ID: 10152
Mencia, E. L., Fürnkranz, J., Hüllermeier, E., & Rapp, M. (2018). Learning interpretable rules for multi-label classification. In H. Jair Escalante, S. Escalera, I. Guyon, X. Baro, Y. Güclüütürk, U. Güclü, & M. A. J. van Gerven (Eds.), Explainable and Interpretable Models in Computer Vision and Machine Learning (pp. 81–113). Springer.
LibreCat
2018 | Conference Paper | LibreCat-ID: 10181
Nguyen, V.-L., Destercke, S., Masson, M.-H., & Hüllermeier, E. (2018). Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI), 5089–5095.
LibreCat
2018 | Conference Paper | LibreCat-ID: 10184
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. Proc. 21st Int. Conference on Discovery Science (DS), 161–175.
LibreCat
2018 | Journal Article | LibreCat-ID: 10276
Schäfer, D., & Hüllermeier, E. (2018). Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
2018 | Journal Article | LibreCat-ID: 10331
Kiesel, J., Kneist, F., Alshomary, M., Stein, B., Hagen, M., & Potthast, M. (2018). Reproducible Web Corpora. Journal of Data and Information Quality, 1–25. https://doi.org/10.1145/3239574
LibreCat
| DOI
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 1369
Drees, M., Feldotto, M., Riechers, S., & Skopalik, A. (2018). Pure Nash equilibria in restricted budget games. Journal of Combinatorial Optimization. https://doi.org/10.1007/s10878-018-0269-7
LibreCat
| Files available
| DOI
2018 | Mastersthesis | LibreCat-ID: 5417 |

Ramaswami, A. (2018). Accelerating Molecular Dynamic Simulations by Offloading Fast Fourier Transformations to FPGA. Universität Paderborn.
LibreCat
| Files available
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 11710
Chen, W.-F., Wachsmuth, H., Al Khatib, K., & Stein, B. (2018). Learning to Flip the Bias of News Headlines. Proceedings of the 11th International Conference on Natural Language Generation, 79–88.
LibreCat
| Download (ext.)
2018 | Conference Paper | LibreCat-ID: 14873
Chen, W.-F., Hagen, M., Stein, B., & Potthast, M. (2018). A User Study on Snippet Generation: Text Reuse vs. Paraphrases. Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 1033–1036.
LibreCat
| Download (ext.)