Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

10 Publications


2024 | Journal Article | LibreCat-ID: 54548
Prager, R. P., & Trautmann, H. (2024). Exploratory Landscape Analysis for Mixed-Variable Problems. IEEE Transactions on Evolutionary Computation, 1–1. https://doi.org/10.1109/TEVC.2024.3399560
LibreCat | DOI
 

2024 | Conference Paper | LibreCat-ID: 56277
Kilsbach, S., & Michel, N. (2024). Computer-Based Generation of Learner-Sensitive Feedback to Argumentative Learner Texts. Proceedings of the Tenth Conference of the International Society for the Study of Argumentation. Tenth Conference of the International Society for the Study of Argumentation, Leiden.
LibreCat
 

2023 | Book Chapter | LibreCat-ID: 52662
Nachtigall, M., Schlichtig, M., & Bodden, E. (2023). Evaluation of Usability Criteria Addressed by Static Analysis Tools on a Large Scale. In Software Engineering 2023 (pp. 95–96). Gesellschaft für Informatik e.V.
LibreCat | Download (ext.)
 

2023 | Conference Paper | LibreCat-ID: 52816
Gräßler, I., & Hieb, M. (2023). Creating Synthetic Training Datasets for Inspection in Machine Vision Quality Gates in Manufacturing. Lectures, 253–524. https://doi.org/10.5162/smsi2023/d7.4
LibreCat | DOI
 

2022 | Conference Paper | LibreCat-ID: 32410
Nachtigall, M., Schlichtig, M., & Bodden, E. (2022). A Large-Scale Study of Usability Criteria Addressed by Static Analysis Tools. Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, 532–543. https://doi.org/10.1145/3533767
LibreCat | Files available | DOI
 

2021 | Journal Article | LibreCat-ID: 21004
Wever, M. D., Tornede, A., Mohr, F., & Hüllermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2021.3051276
LibreCat | DOI
 

2021 | Book Chapter | LibreCat-ID: 48881
Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., & Kerschke, P. (2021). On the Potential of Normalized TSP Features for Automated Algorithm Selection. In Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 1–15). Association for Computing Machinery.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 48897
Seiler, M., Pohl, J., Bossek, J., Kerschke, P., & Trautmann, H. (2020). Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem. Parallel Problem Solving from {Nature} (PPSN XVI), 48–64. https://doi.org/10.1007/978-3-030-58112-1_4
LibreCat | DOI
 

2018 | Conference Paper | LibreCat-ID: 3852 | OA
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In ICML 2018 AutoML Workshop. Stockholm, Sweden.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 48884
Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H. H., & Trautmann, H. (2018). Leveraging TSP Solver Complementarity through Machine Learning. Evolutionary Computation, 26(4), 597–620. https://doi.org/10.1162/evco_a_00215
LibreCat | DOI
 

Filters and Search Terms

keyword="(automated"

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed