Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces

D. Hähnel, J. Förstner, V. Myroshnychenko, ACS Photonics (2023).

Download
OA 2023-06 Hähnel - ACS Photonics - Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces.pdf 5.38 MB
Download (ext.)
OA
Journal Article | Published | English
Abstract
Dielectric metasurfaces provide a unique platform for efficient harmonic generation and optical wavefront manipulation at the nanoscale. Tailoring phase and amplitude of a nonlinearly generated wave with a high emission efficiency using resonance-based metasurfaces is a challenging task that often requires state-of-the-art numerical methods. Here, we propose a simple yet effective approach combining a sampling method with a Monte Carlo approach to design the third-harmonic wavefront generated by all-dielectric metasurfaces composed of elliptical silicon nanodisks. Using this approach, we theoretically demonstrate the full nonlinear 2π phase control with a uniform and highest possible amplitude in the considered parameter space, allowing us to design metasurfaces operating as third harmonic beam deflectors capable of steering light into a desired direction with high emission efficiency. The TH beam deflection with a record calculated average conversion efficiency of 1.2 × 10–1 W–2 is achieved. We anticipate that the proposed approach will be widely applied as alternative to commonly used optimization algorithms with higher complexity and implementation effort for the design of metasurfaces with other holographic functionalities.
Keywords
Publishing Year
Journal Title
ACS Photonics
LibreCat-ID

Cite this

Hähnel D, Förstner J, Myroshnychenko V. Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces. ACS Photonics. Published online 2023. doi:10.1021/acsphotonics.2c01967
Hähnel, D., Förstner, J., & Myroshnychenko, V. (2023). Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces. ACS Photonics. https://doi.org/10.1021/acsphotonics.2c01967
@article{Hähnel_Förstner_Myroshnychenko_2023, title={Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces}, DOI={10.1021/acsphotonics.2c01967}, journal={ACS Photonics}, publisher={American Chemical Society (ACS)}, author={Hähnel, David and Förstner, Jens and Myroshnychenko, Viktor}, year={2023} }
Hähnel, David, Jens Förstner, and Viktor Myroshnychenko. “Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces.” ACS Photonics, 2023. https://doi.org/10.1021/acsphotonics.2c01967.
D. Hähnel, J. Förstner, and V. Myroshnychenko, “Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces,” ACS Photonics, 2023, doi: 10.1021/acsphotonics.2c01967.
Hähnel, David, et al. “Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces.” ACS Photonics, American Chemical Society (ACS), 2023, doi:10.1021/acsphotonics.2c01967.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
Access Level
OA Open Access
Last Uploaded
2023-06-13T09:48:17Z


Link(s) to Main File(s)
URL
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar