On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs
D. Bauch, D. Siebert, K. Jöns, J. Förstner, S. Schumacher, Advanced Quantum Technologies (2023).
Download (ext.)
Journal Article
| Published
| English
Author
Bauch, David;
Siebert, Dustin;
Jöns, KlausLibreCat;
Förstner, JensLibreCat ;
Schumacher, StefanLibreCat
Department
Project
TRR 142 - C09: TRR 142 - Ideale Erzeugung von Photonenpaaren für Verschränkungsaustausch bei Telekom Wellenlängen (C09*)
TRR 142 - B06: TRR 142 - Ultraschnelle kohärente opto-elektronische Kontrolle eines photonischen Quantensystems (B06*)
PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing
TRR 142 - B06: TRR 142 - Ultraschnelle kohärente opto-elektronische Kontrolle eines photonischen Quantensystems (B06*)
PC2: Computing Resources Provided by the Paderborn Center for Parallel Computing
Abstract
<jats:title>Abstract</jats:title><jats:p>The biexciton‐exciton emission cascade commonly used in quantum‐dot systems to generate polarization entanglement yields photons with intrinsically limited indistinguishability. In the present work, it focuses on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishability. It achieves this goal by selectively reducing the biexciton lifetime with an optical resonator. It demonstrates that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement of biexciton emission paired with spectrally broad photon extraction and twofold degenerate optical modes. The in‐depth theoretical study combines (i) the optimization of realistic photonic structures solving Maxwell's equations from which model parameters are extracted as input for (ii) microscopic simulations of quantum‐dot cavity excitation dynamics with full access to photon properties. It reports non‐trivial dependencies on system parameters and use the predictive power of the combined theoretical approach to determine the optimal range of Purcell enhancement that maximizes indistinguishability and entanglement to near unity values, here specifically for the telecom C‐band at 1550 nm.</jats:p>
Keywords
Publishing Year
Journal Title
Advanced Quantum Technologies
LibreCat-ID
Cite this
Bauch D, Siebert D, Jöns K, Förstner J, Schumacher S. On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs. Advanced Quantum Technologies. Published online 2023. doi:10.1002/qute.202300142
Bauch, D., Siebert, D., Jöns, K., Förstner, J., & Schumacher, S. (2023). On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs. Advanced Quantum Technologies. https://doi.org/10.1002/qute.202300142
@article{Bauch_Siebert_Jöns_Förstner_Schumacher_2023, title={On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs}, DOI={10.1002/qute.202300142}, journal={Advanced Quantum Technologies}, publisher={Wiley}, author={Bauch, David and Siebert, Dustin and Jöns, Klaus and Förstner, Jens and Schumacher, Stefan}, year={2023} }
Bauch, David, Dustin Siebert, Klaus Jöns, Jens Förstner, and Stefan Schumacher. “On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs.” Advanced Quantum Technologies, 2023. https://doi.org/10.1002/qute.202300142.
D. Bauch, D. Siebert, K. Jöns, J. Förstner, and S. Schumacher, “On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs,” Advanced Quantum Technologies, 2023, doi: 10.1002/qute.202300142.
Bauch, David, et al. “On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs.” Advanced Quantum Technologies, Wiley, 2023, doi:10.1002/qute.202300142.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Closed Access
Material in LibreCat:
Earlier Version