Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays

H. Farheen, A. Strauch, J.C. Scheytt, V. Myroshnychenko, J. Förstner, Photonics and Nanostructures - Fundamentals and Applications 58 (2023) 101207.

Download
OA 2ß23-12 Farheen - PNFA - Optimized, highly efficient silicon antennas for optical phased arrays.pdf 3.34 MB
Journal Article | Published | English
Abstract
Silicon photonics, in conjunction with complementary metal-oxide-semiconductor (CMOS) fabrication, has greatly enhanced the development of integrated optical phased arrays. This facilitates a dynamic control of light in a compact form factor that enables the synthesis of arbitrary complex wavefronts in the infrared spectrum. We numerically demonstrate a large-scale two-dimensional silicon-based optical phased array (OPA) composed of nanoantennas with circular gratings that are balanced in power and aligned in phase, required for producing elegant radiation patterns in the far-field. For a wavelength of 1.55 μm, we optimize two antennas for the OPA exhibiting an upward radiation efficiency as high as 90%, with almost 6.8% of optical power concentrated in the field of view. Additionally, we believe that the proposed OPAs can be easily fabricated and would have the ability to generate complex holographic images, rendering them an attractive candidate for a wide range of applications like LiDAR sensors, optical trapping, optogenetic stimulation, and augmented-reality displays.
Publishing Year
Journal Title
Photonics and Nanostructures - Fundamentals and Applications
Volume
58
Page
101207
ISSN
LibreCat-ID

Cite this

Farheen H, Strauch A, Scheytt JC, Myroshnychenko V, Förstner J. Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays. Photonics and Nanostructures - Fundamentals and Applications. 2023;58:101207. doi:10.1016/j.photonics.2023.101207
Farheen, H., Strauch, A., Scheytt, J. C., Myroshnychenko, V., & Förstner, J. (2023). Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays. Photonics and Nanostructures - Fundamentals and Applications, 58, 101207. https://doi.org/10.1016/j.photonics.2023.101207
@article{Farheen_Strauch_Scheytt_Myroshnychenko_Förstner_2023, title={Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays}, volume={58}, DOI={10.1016/j.photonics.2023.101207}, journal={Photonics and Nanostructures - Fundamentals and Applications}, publisher={Elsevier BV}, author={Farheen, Henna and Strauch, Andreas and Scheytt, J. Christoph and Myroshnychenko, Viktor and Förstner, Jens}, year={2023}, pages={101207} }
Farheen, Henna, Andreas Strauch, J. Christoph Scheytt, Viktor Myroshnychenko, and Jens Förstner. “Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays.” Photonics and Nanostructures - Fundamentals and Applications 58 (2023): 101207. https://doi.org/10.1016/j.photonics.2023.101207.
H. Farheen, A. Strauch, J. C. Scheytt, V. Myroshnychenko, and J. Förstner, “Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays,” Photonics and Nanostructures - Fundamentals and Applications, vol. 58, p. 101207, 2023, doi: 10.1016/j.photonics.2023.101207.
Farheen, Henna, et al. “Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays.” Photonics and Nanostructures - Fundamentals and Applications, vol. 58, Elsevier BV, 2023, p. 101207, doi:10.1016/j.photonics.2023.101207.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Last Uploaded
2023-12-21T09:34:17Z


External material:
Research Data

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar