Water-assisted proton conductivity and a magnetic study of heterotrinuclear oxalate-bridged compounds: molecular precursors for the Mn2CrO4 spinel
A. Lozančić, S. Burazer, T. Wagner, K. Molčanov, D. Pajić, L. Androš Dubraja, M. Tiemann, M. Jurić, Journal of Materials Chemistry C 13 (2025) 21179–21195.
Journal Article
| Published
| English
Author
Lozančić, Ana;
Burazer, Sanja;
Wagner, Tobias;
Molčanov, Krešimir;
Pajić, Damir;
Androš Dubraja, Lidija;
Tiemann, MichaelLibreCat
;
Jurić, Marijana
Department
Abstract
Novel oxalate-bridged heterotrinuclear complexes [A][Mn2Cr(bpy)2(H2O)2Cl2(C2O4)3] (A = (CH3)2(C2H5)NH+ (1) and (CH3)(C2H5)2NH+ (2); bpy = 2,2′-bipyridine) were synthesized using an aqueous solution of [A]3[Cr(C2O4)3] as a building block in reaction with Mn2+ ions and with the addition of the N-donor ligand bipyridine. The isostructural heterometallic complex salts were characterized by single-crystal and powder X-ray diffraction, infrared and impedance spectroscopy, thermal analysis and magnetization measurements. The trinuclear anion [{Mn(bpy)(H2O)Cl(μ-C2O4)}2Cr(C2O4)]− consists of two [Mn(bpy)(H2O)Cl]+ units bridged by the [Cr(C2O4)3]3− anion, which acts as a bidentate ligand towards each of the manganese atoms. The anions are hydrogen bonded to each other via coordinated chloride anions, water molecules and oxygen oxalate atoms, resulting in two-dimensional (2D) hydrogen bonding layers. Compounds exhibit water-assisted proton conductivity behaviour, which was investigated at different temperatures and relative humidities (RH). At 25 °C, an increase in RH from 60% to 93% resulted in an obvious proton conducting switch from 9.1 × 10−11 to 5.6 × 10−5 S cm−1 for 1 and from 7.4 × 10−10 to 1.8 × 10−6 S cm−1 for 2, corresponding to high on/off ratios of about 106 for 1 and 104 for 2. In situ powder X-ray diffraction (PXRD) analysis showed that unit cell parameters of compounds 1 and 2 slightly increase when exposed to humid conditions. This confirmed that incorporation of water molecules into structures with pores and voids causes the proton conductivity switching phenomenon. Magnetic susceptibility measurements indicate a ferromagnetic interaction between Cr3+ and Mn2+ ions bridged by the bis(bidentate) oxalate group. The prepared compounds 1 and 2 were explored as single-source precursors for the formation of spinel oxide by their thermal treatment. With increasing temperature, the spinel composition changed according to the formula Mn1+xCr2–xO4 (0 ≤ x ≤ 1), where x = 0.7 at 500 °C and x = 1 at 900 °C when tet[MnII]oct[MnIIICrIII]O4 is formed. The (micro)structure, morphology, and optical properties of spinel Mn2CrO4 were characterized by PXRD, scanning electron microscopy and UV-Vis diffuse reflectance spectroscopy. The photocatalytic activity of this oxide in degradation of the methylene blue dye under Vis irradiation without and with the support of hydrogen peroxide was further investigated.
Publishing Year
Journal Title
Journal of Materials Chemistry C
Volume
13
Issue
41
Page
21179-21195
LibreCat-ID
Cite this
Lozančić A, Burazer S, Wagner T, et al. Water-assisted proton conductivity and a magnetic study of heterotrinuclear oxalate-bridged compounds: molecular precursors for the Mn2CrO4 spinel. Journal of Materials Chemistry C. 2025;13(41):21179-21195. doi:10.1039/d5tc02569a
Lozančić, A., Burazer, S., Wagner, T., Molčanov, K., Pajić, D., Androš Dubraja, L., Tiemann, M., & Jurić, M. (2025). Water-assisted proton conductivity and a magnetic study of heterotrinuclear oxalate-bridged compounds: molecular precursors for the Mn2CrO4 spinel. Journal of Materials Chemistry C, 13(41), 21179–21195. https://doi.org/10.1039/d5tc02569a
@article{Lozančić_Burazer_Wagner_Molčanov_Pajić_Androš Dubraja_Tiemann_Jurić_2025, title={Water-assisted proton conductivity and a magnetic study of heterotrinuclear oxalate-bridged compounds: molecular precursors for the Mn2CrO4 spinel}, volume={13}, DOI={10.1039/d5tc02569a}, number={41}, journal={Journal of Materials Chemistry C}, publisher={Royal Society of Chemistry (RSC)}, author={Lozančić, Ana and Burazer, Sanja and Wagner, Tobias and Molčanov, Krešimir and Pajić, Damir and Androš Dubraja, Lidija and Tiemann, Michael and Jurić, Marijana}, year={2025}, pages={21179–21195} }
Lozančić, Ana, Sanja Burazer, Tobias Wagner, Krešimir Molčanov, Damir Pajić, Lidija Androš Dubraja, Michael Tiemann, and Marijana Jurić. “Water-Assisted Proton Conductivity and a Magnetic Study of Heterotrinuclear Oxalate-Bridged Compounds: Molecular Precursors for the Mn2CrO4 Spinel.” Journal of Materials Chemistry C 13, no. 41 (2025): 21179–95. https://doi.org/10.1039/d5tc02569a.
A. Lozančić et al., “Water-assisted proton conductivity and a magnetic study of heterotrinuclear oxalate-bridged compounds: molecular precursors for the Mn2CrO4 spinel,” Journal of Materials Chemistry C, vol. 13, no. 41, pp. 21179–21195, 2025, doi: 10.1039/d5tc02569a.
Lozančić, Ana, et al. “Water-Assisted Proton Conductivity and a Magnetic Study of Heterotrinuclear Oxalate-Bridged Compounds: Molecular Precursors for the Mn2CrO4 Spinel.” Journal of Materials Chemistry C, vol. 13, no. 41, Royal Society of Chemistry (RSC), 2025, pp. 21179–95, doi:10.1039/d5tc02569a.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Closed Access
