Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
206 Publications
2020 | Conference Paper | LibreCat-ID: 46324
Bossek, J., Kerschke, P., & Trautmann, H. (2020). Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection. Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 1–8.
LibreCat
2020 | Conference Paper | LibreCat-ID: 46323
Bossek, J., Grimme, C., & Trautmann, H. (2020). Dynamic Bi-Objective Routing of Multiple Vehicles. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’20), 166–174.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46343
Grimme, C., Kerschke, P., & Trautmann, H. (2019). Multimodality in Multi-Objective Optimization — More Boon than Bane? In K. Deb, E. Goodman, C. C. A. Coello, K. Klamroth, K. Miettinen, S. Mostaghim, & P. Reed (Eds.), Proceedings of the 10$^th$ International Conference on Evolutionary Multi-Criterion Optimization (EMO) (Vol. 11411, pp. 126–138). Springer. https://doi.org/10.1007/978-3-030-12598-1_11
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46345
Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated Algorithm Selection: Survey and Perspectives. Evolutionary Computation (ECJ), 27(1), 3–45. https://doi.org/10.1162/evco_a_00242
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46344
Carnein, M., & Trautmann, H. (2019). Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms. Business and Information Systems Engineering (BISE), 61(3), 277–297.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46340
Carnein, M., Homann, L., Trautmann, H., & Vossen, G. (2019). A Recommender System Based on Omni-Channel Customer Data. Proceedings of the 21$^st$ IEEE Conference on Business Informatics (CBI’ 19), 65–74.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46341
Carnein, M., & Trautmann, H. (2019). Customer Segmentation Based on Transactional Data Using Stream Clustering. Proceedings of the 23$^rd$ Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD ’19), 280–292.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46342
Grimme, C., Kerschke, P., Emmerich, M. T. M., Preuss, M., Deutz, A. H., & Trautmann, H. (2019). Sliding to the Global Optimum: How to Benefit from Non-Global Optima in Multimodal Multi-Objective Optimization. AIP Conference Proceedings, 020052-1-020052–020054. https://doi.org/10.1063/1.5090019
LibreCat
| DOI
2019 | Book Chapter | LibreCat-ID: 46336
Kerschke, P., & Trautmann, H. (2019). Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-package flacco. In N. Bauer, K. Ickstadt, K. Lübke, G. Szepannek, H. Trautmann, & M. Vichi (Eds.), Applications in Statistical Computing (pp. 93–123). Springer. https://doi.org/10.1007/978-3-030-25147-5_7
LibreCat
| DOI
2019 | Book | LibreCat-ID: 46335
Trautmann, H. (2019). Applications in Statistical Computing — From Music Data Analysis to Industrial Quality Improvement. Springer International Publishing.
LibreCat
2019 | Journal Article | LibreCat-ID: 46346
Kerschke, P., & Trautmann, H. (2019). Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning. Evolutionary Computation (ECJ), 27(1), 99–127. https://doi.org/10.1162/evco_a_00236
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46347
Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M. (2019). Search Dynamics on Multimodal Multi-Objective Problems. Evolutionary Computation (ECJ), 27(4), 577–609. https://doi.org/10.1162/evco_a_00234
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48841
Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2019). Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm. In K. Deb, E. Goodman, C. A. Coello Coello, K. Klamroth, K. Miettinen, S. Mostaghim, & P. Reed (Eds.), Evolutionary Multi-Criterion Optimization (EMO) (pp. 516–528). Springer International Publishing. https://doi.org/10.1007/978-3-030-12598-1_41
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48842
Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., & Trautmann, H. (2019). Evolving Diverse TSP Instances by Means of Novel and Creative Mutation Operators. Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 58–71. https://doi.org/10.1145/3299904.3340307
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48843
Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2019). Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring. Proceedings of the Genetic and Evolutionary Computation Conference, 1443–1451. https://doi.org/10.1145/3321707.3321792
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48840
Bossek, J., Grimme, C., & Neumann, F. (2019). On the Benefits of Biased Edge-Exchange Mutation for the Multi-Criteria Spanning Tree Problem. Proceedings of the Genetic and Evolutionary Computation Conference, 516–523. https://doi.org/10.1145/3321707.3321818
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48858
Bossek, J., & Grimme, C. (2019). Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Problems. In R. Battiti, M. Brunato, I. Kotsireas, & P. M. Pardalos (Eds.), Learning and Intelligent Optimization (pp. 184–198). Springer International Publishing. https://doi.org/10.1007/978-3-030-05348-2_17
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48870
Bossek, J., & Sudholt, D. (2019). Time Complexity Analysis of RLS and (1 + 1) EA for the Edge Coloring Problem. Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 102–115. https://doi.org/10.1145/3299904.3340311
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48875
Bossek, J., & Trautmann, H. (2019). Multi-Objective Performance Measurement: Alternatives to PAR10 and Expected Running Time. In R. Battiti, M. Brunato, I. Kotsireas, & P. M. Pardalos (Eds.), Learning and Intelligent Optimization (pp. 215–219). Springer International Publishing. https://doi.org/10.1007/978-3-030-05348-2_19
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 48877
Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., Seibold, H., Vanschoren, J., & Bischl, B. (2019). OpenML: An R Package to Connect to the Machine Learning Platform OpenML. Computational Statistics, 34(3), 977–991. https://doi.org/10.1007/s00180-017-0742-2
LibreCat
| DOI