Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
66 Publications
2020 | Journal Article | LibreCat-ID: 16290 |

K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz, and M. Dellnitz, “Deep model predictive flow control with limited sensor data and online learning,” Theoretical and Computational Fluid Dynamics, vol. 34, pp. 577–591, 2020.
LibreCat
| DOI
| Download (ext.)
2020 | Journal Article | LibreCat-ID: 16309
S. Peitz, S. E. Otto, and C. W. Rowley, “Data-Driven Model Predictive Control using Interpolated Koopman Generators,” SIAM Journal on Applied Dynamical Systems, vol. 19, no. 3, pp. 2162–2193, 2020.
LibreCat
| DOI
| Download (ext.)
2020 | Journal Article | LibreCat-ID: 16297
C. I. Hernández Castellanos, S. Ober-Blöbaum, and S. Peitz, “Explicit Multi-objective Model Predictive Control for Nonlinear Systems Under Uncertainty,” International Journal of Robust and Nonlinear Control, vol. 30(17), pp. 7593–7618, 2020, doi: 10.1002/rnc.5197.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 10597
S. Hanke, S. Peitz, O. Wallscheid, J. Böcker, and M. Dellnitz, “Finite-Control-Set Model Predictive Control for a Permanent Magnet Synchronous Motor Application with Online Least Squares System Identification,” in 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 2019.
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 29636
S. Hanke, S. Peitz, O. Wallscheid, J. Böcker, and M. Dellnitz, “Finite-control-set model predictive control for a permanent magnet synchronous motor application with online least squares system identification,” in 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 2019, pp. 1–6.
LibreCat
2018 | Preprint | LibreCat-ID: 21634 |

S. Hanke, S. Peitz, O. Wallscheid, S. Klus, J. Böcker, and M. Dellnitz, “Koopman Operator-Based Finite-Control-Set Model Predictive Control for Electrical Drives,” arXiv:1804.00854. 2018.
LibreCat
| Download (ext.)
2018 | Book Chapter | LibreCat-ID: 22796
F. Kummert et al., “Eingesetzte wissenschaftliche Methoden,” in Ressourceneffiziente Selbstoptimierende Wäscherei – Ergebnisse des ReSerW-Projekts, A. Trächtler, Ed. Paderborn: Springer, 2018.
LibreCat
2018 | Journal Article | LibreCat-ID: 8751 |

S. Peitz and M. Dellnitz, “A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and Objective Reduction,” Mathematical and Computational Applications, vol. 23, no. 2, 2018.
LibreCat
| DOI
| Download (ext.)
2018 | Preprint | LibreCat-ID: 16292 |

S. Peitz, “Controlling nonlinear PDEs using low-dimensional bilinear approximations obtained from data,” arXiv:1801.06419. 2018.
LibreCat
| Download (ext.)
2018 | Preprint | LibreCat-ID: 16293 |

S. Klus, S. Peitz, and I. Schuster, “Analyzing high-dimensional time-series data using kernel transfer operator eigenfunctions,” arXiv:1805.10118. 2018.
LibreCat
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 29624
S. Hanke, S. Peitz, O. Wallscheid, S. Klus, J. Böcker, and M. Dellnitz, “Koopman Operator-Based Finite-Control-Set Model Predictive Control for Electrical Drives,” arXiv preprint arXiv:1804.00854, 2018.
LibreCat
2018 | Journal Article | LibreCat-ID: 8753
S. Peitz, S. Ober-Blöbaum, and M. Dellnitz, “Multiobjective Optimal Control Methods for the Navier-Stokes Equations Using Reduced Order Modeling,” Acta Applicandae Mathematicae, vol. 161, no. 1, pp. 171–199, 2018, doi: 10.1007/s10440-018-0209-7.
LibreCat
| DOI