Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
2372 Publications
2019 | Journal Article | LibreCat-ID: 63356
Y. Tao and M. Winkler, “Large time behavior in a forager–exploiter model with different taxis strategies for two groups in search of food,” Mathematical Models and Methods in Applied Sciences, vol. 29, no. 11, pp. 2151–2182, 2019, doi: 10.1142/s021820251950043x.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63352
J. Lankeit and M. Winkler, “Counterintuitive dependence of temporal asymptotics on initial decay in a nonlocal degenerate parabolic equation arising in game theory,” Israel Journal of Mathematics, vol. 233, no. 1, pp. 249–296, 2019, doi: 10.1007/s11856-019-1900-8.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63358
Y. Tao and M. Winkler, “A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production,” Communications on Pure & Applied Analysis, vol. 18, no. 4, pp. 2047–2067, 2019, doi: 10.3934/cpaa.2019092.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63357
Y. Tao and M. Winkler, “Global smooth solvability of a parabolic–elliptic nutrient taxis system in domains of arbitrary dimension,” Journal of Differential Equations, vol. 267, no. 1, pp. 388–406, 2019, doi: 10.1016/j.jde.2019.01.014.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63353
J. Lankeit and M. Winkler, “Facing Low Regularity in Chemotaxis Systems,” Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 122, no. 1, pp. 35–64, 2019, doi: 10.1365/s13291-019-00210-z.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63351
P. Krzyżanowski, M. Winkler, and D. Wrzosek, “Migration-driven benefit in a two-species nutrient taxis system,” Nonlinear Analysis: Real World Applications, vol. 48, pp. 94–116, 2019, doi: 10.1016/j.nonrwa.2019.01.006.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63362
M. Winkler, “Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation,” Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 36, no. 6, pp. 1747–1790, 2019, doi: 10.1016/j.anihpc.2019.02.004.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63363
M. Winkler, “Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions,” Mathematical Models and Methods in Applied Sciences, vol. 29, no. 03, pp. 373–418, 2019, doi: 10.1142/s021820251950012x.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63366
M. Winkler, “Instantaneous regularization of distributions from<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e19" altimg="si17.gif"><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mo>⋆</mml:mo></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>in the one-dimensional parabolic Keller–Segel system,” Nonlinear Analysis, vol. 183, pp. 102–116, 2019, doi: 10.1016/j.na.2019.01.017.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63359
Y. Wang, M. Winkler, and Z. Xiang, “The fast signal diffusion limit in Keller–Segel(-fluid) systems,” Calculus of Variations and Partial Differential Equations, vol. 58, no. 6, Art. no. 196, 2019, doi: 10.1007/s00526-019-1656-3.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63364
M. Winkler, “How strong singularities can be regularized by logistic degradation in the Keller–Segel system?,” Annali di Matematica Pura ed Applicata (1923 -), vol. 198, no. 5, pp. 1615–1637, 2019, doi: 10.1007/s10231-019-00834-z.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63367
M. Winkler, “Does repulsion-type directional preference in chemotactic migration continue to regularize Keller–Segel systems when coupled to the Navier–Stokes equations?,” Nonlinear Differential Equations and Applications NoDEA, vol. 26, no. 6, Art. no. 48, 2019, doi: 10.1007/s00030-019-0600-8.
LibreCat
| DOI