Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

402 Publications


2019 | Conference Abstract | LibreCat-ID: 8868
Wever, M. D., Mohr, F., Hüllermeier, E., & Hetzer, A. (2019). Towards Automated Machine Learning for Multi-Label Classification. Presented at the European Conference on Data Analytics (ECDA), Bayreuth, Germany.
LibreCat | Files available
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Proc. 21st Int. Conference on Discovery Science (DS) (pp. 161–175).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 3852
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In ICML 2018 AutoML Workshop. Stockholm, Sweden.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2479
Mohr, F., Wever, M. D., Hüllermeier, E., & Faez, A. (2018). (WIP) Towards the Automated Composition of Machine Learning Services. In SCC. San Francisco, CA, USA: IEEE. https://doi.org/10.1109/SCC.2018.00039
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl, M. (2018). Learning about learning curves from dataset properties.
LibreCat
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C., … Yi, K. (Eds.). (2018). Research Directions for Principles of Data Management (Vol. 7, pp. 1–29).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen, V.-L., Destercke, S., Masson, M.-H., & Hüllermeier, E. (2018). Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. In Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI) (pp. 5089–5095).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2471
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). On-The-Fly Service Construction with Prototypes. In SCC. San Francisco, CA, USA: IEEE Computer Society. https://doi.org/10.1109/SCC.2018.00036
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Discovery Science (pp. 161–175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul, A., Hüllermeier, E., & Busa-Fekete, R. (2018). Ranking Distributions based on  Noisy Sorting. In Proc. 35th Int. Conference on Machine Learning (ICML) (pp. 3469–3477).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2109
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Ensembles of Evolved Nested Dichotomies for Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM. https://doi.org/10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 16038
Schäfer, D., & Hüllermeier, E. (2018). Dyad ranking using Plackett-Luce models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 3552
Mohr, F., Wever, M. D., & Hüllermeier, E. (n.d.). Reduction Stumps for Multi-Class Classification. In Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. https://doi.org/10.1007/978-3-030-01768-2_19
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10149
Hesse, M., Timmermann, J., Hüllermeier, E., & Trächtler, A. (2018). A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. In Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24 (pp. 15–20).
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10276
Schäfer, D., & Hüllermeier, E. (2018). Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
Couso, I., & Hüllermeier, E. (2018). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In S. Mostaghim, A. Nürnberger, & C. Borgelt (Eds.), Frontiers in Computational Intelligence (pp. 31–46). Springer.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857
Mohr, F., Lettmann, T., Hüllermeier, E., & Wever, M. D. (2018). Programmatic Task Network Planning. In Proceedings of the 1st ICAPS Workshop on Hierarchical Planning (pp. 31–39). Delft, Netherlands: AAAI.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3402
Melnikov, V., & Hüllermeier, E. (2018). On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. https://doi.org/10.1007/s10994-018-5733-1
LibreCat | Files available | DOI
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
Graf, H. (2018). Ranking of Classification Algorithms in AutoML.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379
Seemann, N., Geierhos, M., Merten, M.-L., Tophinke, D., Wever, M. D., & Hüllermeier, E. (2018). Supporting the Cognitive Process in Annotation Tasks. In K. Eckart & D. Schlechtweg (Eds.), Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft. Stuttgart, Germany.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar, M., & Hüllermeier, E. (2018). Learning to Rank Based on Analogical Reasoning. In Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI) (pp. 2951–2958).
LibreCat
 

2018 | Journal Article | LibreCat-ID: 3510
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning, 1495–1515. https://doi.org/10.1007/s10994-018-5735-z
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 10152
Mencia, E. L., Fürnkranz, J., Hüllermeier, E., & Rapp, M. (2018). Learning interpretable rules for multi-label classification. In H. Jair Escalante, S. Escalera, I. Guyon, X. Baro, Y. Güclüütürk, U. Güclü, & M. A. J. van Gerven (Eds.), Explainable and Interpretable Models in Computer Vision and Machine Learning (pp. 81–113). Springer.
LibreCat
 

2017 | Bachelorsthesis | LibreCat-ID: 5694
Schnitker, N. N. (2017). Genetischer Algorithmus zur Erstellung von Ensembles von Nested Dichotomies.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1180
Wever, M. D., Mohr, F., & Hüllermeier, E. (2017). Automatic Machine Learning: Hierachical Planning Versus Evolutionary Optimization. In 27th Workshop Computational Intelligence. Dortmund.
LibreCat | Files available | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 10204
Ewerth, R., Springstein, M., Müller, E., Balz, A., Gehlhaar, J., Naziyok, T., … Hüllermeier, E. (2017). Estimating relative depth in single images via rankboost. In Proc. IEEE Int. Conf. on Multimedia and Expo (ICME 2017) (pp. 919–924).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10216
Shaker, A., Heldt, W., & Hüllermeier, E. (2017). Learning TSK Fuzzy Rules from Data Streams. In Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10209
Ahmadi Fahandar, M., & Hüllermeier, E. (2017). Learning to Rank based on Analogical Reasoning. In Proc. AAAI 2017, 32nd AAAI Conference on Artificial Intelligence.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15110
Couso, I., Dubois, D., & Hüllermeier, E. (2017). Maximum likelihood estimation and coarse data. In in Proceedings SUM 2017, 11th International Conference on Scalable Uncertainty Management, Granada, Spain (pp. 3–16). Springer.
LibreCat
 

2017 | Conference Abstract | LibreCat-ID: 5722
Gupta, P., Hetzer, A., Tornede, T., Gottschalk, S., Kornelsen, A., Osterbrink, S., … Hüllermeier, E. (2017). jPL: A Java-based Software Framework for Preference Learning. Presented at the WDA 2017 Workshops: KDML, FGWM, IR, and FGDB, Rostock.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10205
Ahmadi Fahandar, M., Hüllermeier, E., & Couso, I. (2017). Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent  Coarsening. In Proc. 34th Int. Conf. on Machine Learning (ICML 2017) (pp. 1078–1087).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10212
Hoffmann, F., Hüllermeier, E., & Mikut, R. (2017). (Hrsg.) Proceedings 27. Workshop Computational Intelligence, KIT Scientific Publishing, Karlsruhe, Germany 2017.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10267
Bräuning, M., Hüllermeier, E., Keller, T., & Glaum, M. (2017). Lexicographic preferences for predictive modeling of human decision making. A new machine learning method with an application  in accounting. European Journal of Operational Research, 258(1), 295–306.
LibreCat
 

2017 | Encyclopedia Article | LibreCat-ID: 10589
Fürnkranz, J., & Hüllermeier, E. (2017). Preference Learning. In Encyclopedia of Machine Learning and Data Mining (pp. 1000–1005).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15399
Czech, M., Hüllermeier, E., Jacobs, M. C., & Wehrheim, H. (2017). Predicting rankings of software verification tools. In in Proceedings ESEC/FSE Workshops 2017 - 3rd ACM SIGSOFT, International Workshop on Software Analytics (SWAN 2017), Paderborn Germany.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10213
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics. In Proceedings 27. Workshop Computational Intelligence, Dortmund, Germany 2017 (pp. 1–12).
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10268
Platenius, M.-C., Shaker, A., Becker, M., Hüllermeier, E., & Schäfer, W. (2017). Imprecise Matching of Requirements Specifications for Software Services Using Fuzzy Logic. IEEE Transactions on Software Engineering, 43(8), 739–759.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10206
Mohr, F., Lettmann, T., & Hüllermeier, E. (2017). Planning with Independent Task Networks. In Proc. 40th Annual German Conference on Advances in Artificial Intelligence (KI 2017) (pp. 193–206).
LibreCat | Files available
 

2017 | Mastersthesis | LibreCat-ID: 5724
Hetzer, A., & Tornede, T. (2017). Solving the Container Pre-Marshalling Problem using Reinforcement Learning and Structured Output Prediction. Paderborn.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 71
Czech, M., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (2017). Predicting Rankings of Software Verification Tools. In Proceedings of the 3rd International Workshop on Software Analytics (pp. 23–26). https://doi.org/10.1145/3121257.3121262
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 115
Jakobs, M.-C., Krämer, J., van Straaten, D., & Lettmann, T. (2017). Certification Matters for Service Markets. In T. P. Marcelo De Barros, Janusz Klink,Tadeus Uhl (Ed.), The Ninth International Conferences on Advanced Service Computing (SERVICE COMPUTATION) (pp. 7–12).
LibreCat | Files available
 

2017 | Conference Paper | LibreCat-ID: 10207
Czech, M., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (2017). Predicting rankings of software verification tools. In Proc. 3rd ACM SIGSOFT Int. I Workshop on Software Analytics (SWAN@ESEC/SIGSOFT FSE 2017 (pp. 23–26).
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10269
Hüllermeier, E. (2017). From Knowledge-based to Data-driven Modeling of Fuzzy Rule-based Systems: A Critical Reflection. The Computing Research Repository  (CoRR).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 3325
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics. In Proceedings. 27. Workshop Computational Intelligence, Dortmund, 23. - 24. November 2017. KIT Scientific Publishing. https://doi.org/10.5445/KSP/1000074341
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 1158
Seemann, N., Merten, M.-L., Geierhos, M., Tophinke, D., & Hüllermeier, E. (2017). Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low German. In Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (pp. 40–45). Stroudsburg, PA, USA: Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/W17-2206
LibreCat | DOI
 

2017 | Report | LibreCat-ID: 72
Czech, M., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (2017). Predicting Rankings of Software Verification Competitions.
LibreCat | Files available
 

2017 | Conference Paper | LibreCat-ID: 10208
Couso, I., Dubois, D., & Hüllermeier, E. (2017). Maximum Likelihood Estimation and Coarse Data. In Proc. 11th Int. Conf. on Scalable Uncertainty Management (SUM 2017) (pp. 3–16).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15397
Melnikov, V., & Hüllermeier, E. (2017). Optimizing the structure of nested dichotomies. A comparison of two heuristics. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), in Proceedings 27th Workshop Computational Intelligence, Dortmund Germany (pp. 1–12). KIT Scientific Publishing.
LibreCat
 

2017 | Book Chapter | LibreCat-ID: 10784
Fürnkranz, J., & Hüllermeier, E. (2017). Preference Learning. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining (Vol. 107, pp. 1000–1005). Springer.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10228
Schäfer, D., & Hüllermeier, E. (2016). Preference-Based Reinforcement Learning Using Dyad Ranking. In R. Busa-Fekete, E. Hüllermeier, V. Mousseau, & K. Pfannschmidt (Eds.), Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed