Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

418 Publications


2019 | Journal Article | LibreCat-ID: 10578
V. K. Tagne, S. Fotso, L. A. Fono, and E. Hüllermeier, “Choice Functions Generated by Mallows and Plackett–Luce Relations,” New Mathematics and Natural Computation, vol. 15, no. 2, pp. 191–213, 2019.
LibreCat
 

2019 | Book Chapter | LibreCat-ID: 15004
M. Ahmadi Fahandar and E. Hüllermeier, “Feature Selection for Analogy-Based Learning to Rank,” in Discovery Science, Cham, 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15009
N. Epple, S. Dari, L. Drees, V. Protschky, and A. Riener, “Influence of Cruise Control on Driver Guidance - a Comparison between System Generations and Countries,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15011
A. Tornede, M. D. Wever, and E. Hüllermeier, “Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking,” in Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019, Dortmund, 2019, pp. 135–146.
LibreCat | Files available
 

2019 | Book Chapter | LibreCat-ID: 15005
M. Ahmadi Fahandar and E. Hüllermeier, “Analogy-Based Preference Learning with Kernels,” in KI 2019: Advances in Artificial Intelligence, Cham, 2019.
LibreCat | DOI
 

2019 | Preprint | LibreCat-ID: 18016
V. Bengs and E. Hüllermeier, “Preselection Bandits under the Plackett-Luce Model,” arXiv:1907.06123. .
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 13132
F. Mohr, M. D. Wever, A. Tornede, and E. Hüllermeier, “From Automated to On-The-Fly Machine Learning,” in INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft, Kassel, 2019, pp. 273–274.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 14027
V. Bengs, M. Eulert, and H. Holzmann, “Asymptotic confidence sets for the jump curve in bivariate regression problems,” Journal of Multivariate Analysis, pp. 291–312, 2019.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15001
I. Couso, C. Borgelt, E. Hüllermeier, and R. Kruse, “Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning,” IEEE Computational Intelligence Magazine, pp. 31–44, 2019.
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15006
V.-L. Nguyen, S. Destercke, and E. Hüllermeier, “Epistemic Uncertainty Sampling,” in Discovery Science, Cham, 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15013
K. Brinker and E. Hüllermeier, “A Reduction of Label Ranking to Multiclass Classification,” in Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15025
M. D. Wever, L. van Rooijen, and H. Hamann, “Multi-Oracle Coevolutionary Learning of Requirements Specifications from Examples in On-The-Fly Markets,” Evolutionary Computation.
LibreCat | Files available | DOI
 

2019 | Conference Abstract | LibreCat-ID: 8868
M. D. Wever, F. Mohr, E. Hüllermeier, and A. Hetzer, “Towards Automated Machine Learning for Multi-Label Classification,” presented at the European Conference on Data Analytics (ECDA), Bayreuth, Germany, 2019.
LibreCat | Files available
 

2018 | Conference Paper | LibreCat-ID: 10184
D. Schäfer and E. Hüllermeier, “Preference-Based Reinforcement Learning Using Dyad Ranking,” in Proc. 21st Int. Conference on Discovery Science (DS), 2018, pp. 161–175.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2479
F. Mohr, M. D. Wever, E. Hüllermeier, and A. Faez, “(WIP) Towards the Automated Composition of Machine Learning Services,” in SCC, San Francisco, CA, USA, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852
M. D. Wever, F. Mohr, and E. Hüllermeier, “ML-Plan for Unlimited-Length Machine Learning Pipelines,” in ICML 2018 AutoML Workshop, Stockholm, Sweden, 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Conference (Editor) | LibreCat-ID: 10591
S. Abiteboul et al., Eds., Research Directions for Principles of Data Management, vol. 7, no. 1. 2018, pp. 1–29.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
M. Scheibl, Learning about learning curves from dataset properties. 2018.
LibreCat
 

2018 | Preprint | LibreCat-ID: 17713
M. D. Wever, F. Mohr, and E. Hüllermeier, “Automated Multi-Label Classification based on ML-Plan.” Arxiv, 2018.
LibreCat | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 19524
K. Pfannschmidt, P. Gupta, and E. Hüllermeier, “Deep Architectures for Learning Context-dependent Ranking Functions,” arXiv:1803.05796. 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10148
A. El Mesaoudi-Paul, E. Hüllermeier, and R. Busa-Fekete, “Ranking Distributions based on  Noisy Sorting,” in Proc. 35th Int. Conference on Machine Learning (ICML), 2018, pp. 3469–3477.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
V.-L. Nguyen, S. Destercke, M.-H. Masson, and E. Hüllermeier, “Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty,” in Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI), 2018, pp. 5089–5095.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
D. Schäfer and E. Hüllermeier, “Dyad ranking using Plackett-Luce models based on joint feature representations,” Machine Learning, vol. 107, no. 5, pp. 903–941, 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2109
M. D. Wever, F. Mohr, and E. Hüllermeier, “Ensembles of Evolved Nested Dichotomies for Classification,” in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, Kyoto, Japan, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2471
F. Mohr, M. D. Wever, and E. Hüllermeier, “On-The-Fly Service Construction with Prototypes,” in SCC, San Francisco, CA, USA, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
D. Schäfer and E. Hüllermeier, “Preference-Based Reinforcement Learning Using Dyad Ranking,” in Discovery Science, Cham: Springer International Publishing, 2018, pp. 161–175.
LibreCat | Files available | DOI
 

2018 | Preprint | LibreCat-ID: 17714
F. Mohr, M. D. Wever, and E. Hüllermeier, “Automated machine learning service composition.” 2018.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 10276
D. Schäfer and E. Hüllermeier, “Dyad Ranking Using Plackett-Luce Models based on joint feature representations,” Machine Learning, vol. 107, no. 5, pp. 903–941, 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10149
M. Hesse, J. Timmermann, E. Hüllermeier, and A. Trächtler, “A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart,” in Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24, 2018, pp. 15–20.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
I. Couso and E. Hüllermeier, “Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators,” in Frontiers in Computational Intelligence, S. Mostaghim, A. Nürnberger, and C. Borgelt, Eds. Springer, 2018, pp. 31–46.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857
F. Mohr, T. Lettmann, E. Hüllermeier, and M. D. Wever, “Programmatic Task Network Planning,” in Proceedings of the 1st ICAPS Workshop on Hierarchical Planning, Delft, Netherlands, 2018, pp. 31–39.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3552
F. Mohr, M. D. Wever, and E. Hüllermeier, “Reduction Stumps for Multi-Class Classification,” in Proceedings of the Symposium on Intelligent Data Analysis, ‘s-Hertogenbosch, the Netherlands.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10145
M. Ahmadi Fahandar and E. Hüllermeier, “Learning to Rank Based on Analogical Reasoning,” in Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI), 2018, pp. 2951–2958.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10152
E. L. Mencia, J. Fürnkranz, E. Hüllermeier, and M. Rapp, “Learning interpretable rules for multi-label classification,” in Explainable and Interpretable Models in Computer Vision and Machine Learning, H. Jair Escalante, S. Escalera, I. Guyon, X. Baro, Y. Güclüütürk, U. Güclü, and M. A. J. van Gerven, Eds. Springer, 2018, pp. 81–113.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379
N. Seemann, M. Geierhos, M.-L. Merten, D. Tophinke, M. D. Wever, and E. Hüllermeier, “Supporting the Cognitive Process in Annotation Tasks,” in Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft, Stuttgart, Germany, 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3402
V. Melnikov and E. Hüllermeier, “On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis,” Machine Learning, 2018.
LibreCat | Files available | DOI
 

2018 | Journal Article | LibreCat-ID: 3510
F. Mohr, M. D. Wever, and E. Hüllermeier, “ML-Plan: Automated Machine Learning via Hierarchical Planning,” Machine Learning, pp. 1495–1515, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
H. Graf, Ranking of Classification Algorithms in AutoML. 2018.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10204
R. Ewerth et al., “Estimating relative depth in single images via rankboost,” in Proc. IEEE Int. Conf. on Multimedia and Expo (ICME 2017), 2017, pp. 919–924.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10209
M. Ahmadi Fahandar and E. Hüllermeier, “Learning to Rank based on Analogical Reasoning,” in Proc. AAAI 2017, 32nd AAAI Conference on Artificial Intelligence, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10216
A. Shaker, W. Heldt, and E. Hüllermeier, “Learning TSK Fuzzy Rules from Data Streams,” in Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1180
M. D. Wever, F. Mohr, and E. Hüllermeier, “Automatic Machine Learning: Hierachical Planning Versus Evolutionary Optimization,” in 27th Workshop Computational Intelligence, Dortmund, 2017.
LibreCat | Files available | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 15110
I. Couso, D. Dubois, and E. Hüllermeier, “Maximum likelihood estimation and coarse data,” in in Proceedings SUM 2017, 11th International Conference on Scalable Uncertainty Management, Granada, Spain, 2017, pp. 3–16.
LibreCat
 

2017 | Bachelorsthesis | LibreCat-ID: 5694
N. N. Schnitker, Genetischer Algorithmus zur Erstellung von Ensembles von Nested Dichotomies. 2017.
LibreCat
 

2017 | Encyclopedia Article | LibreCat-ID: 10589
J. Fürnkranz and E. Hüllermeier, “Preference Learning,” in Encyclopedia of Machine Learning and Data Mining, 2017, pp. 1000–1005.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10205
M. Ahmadi Fahandar, E. Hüllermeier, and I. Couso, “Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent  Coarsening,” in Proc. 34th Int. Conf. on Machine Learning (ICML 2017), 2017, pp. 1078–1087.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10212
F. Hoffmann, E. Hüllermeier, and R. Mikut, “(Hrsg.) Proceedings 27. Workshop Computational Intelligence, KIT Scientific Publishing, Karlsruhe, Germany 2017,” 2017.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10267
M. Bräuning, E. Hüllermeier, T. Keller, and M. Glaum, “Lexicographic preferences for predictive modeling of human decision making. A new machine learning method with an application  in accounting,” European Journal of Operational Research, vol. 258, no. 1, pp. 295–306, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15399
M. Czech, E. Hüllermeier, M. C. Jacobs, and H. Wehrheim, “Predicting rankings of software verification tools,” in in Proceedings ESEC/FSE Workshops 2017 - 3rd ACM SIGSOFT, International Workshop on Software Analytics (SWAN 2017), Paderborn Germany, 2017.
LibreCat
 

2017 | Conference Abstract | LibreCat-ID: 5722
P. Gupta et al., “jPL: A Java-based Software Framework for Preference Learning,” presented at the WDA 2017 Workshops: KDML, FGWM, IR, and FGDB, Rostock, 2017.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed