Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

47 Publications


2021 | Journal Article | LibreCat-ID: 45959
Kovács B, Li B, Lubich C. A convergent evolving finite element algorithm for Willmore flow of closed surfaces. Numerische Mathematik. 2021;149(3):595-643. doi:10.1007/s00211-021-01238-z
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45954
Hipp D, Kovács B. Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates. IMA Journal of Numerical Analysis. 2020;41(1):638-728. doi:10.1093/imanum/drz073
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45953
Hipp D, Kovács B. Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates. IMA Journal of Numerical Analysis. 2020;41(1):638-728. doi:10.1093/imanum/drz073
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45955
Akrivis G, Feischl M, Kovács B, Lubich C. Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation. Mathematics of Computation. 2020;90(329):995-1038. doi:10.1090/mcom/3597
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45952
Kovács B, Li B, Lubich C. A convergent algorithm for forced mean curvature flow driven by diffusion on the surface. Interfaces and Free Boundaries. 2020;22(4):443-464. doi:10.4171/ifb/446
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 45948
Kovács B, Li B, Lubich C. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numerische Mathematik. 2019;143(4):797-853. doi:10.1007/s00211-019-01074-2
LibreCat | DOI
 

2018 | Habilitation | LibreCat-ID: 45974 | OA
Kovács B. Numerical Analysis of Partial Differential Equations on and of Evolving Surfaces.; 2018.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 45950
Karátson J, Kovács B, Korotov S. Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary. IMA Journal of Numerical Analysis. 2018;40(2):1241-1265. doi:10.1093/imanum/dry086
LibreCat | DOI
 

2018 | Journal Article | LibreCat-ID: 45949
Karátson J, Kovács B, Korotov S. Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary. IMA Journal of Numerical Analysis. 2018;40(2):1241-1265. doi:10.1093/imanum/dry086
LibreCat | DOI
 

2018 | Journal Article | LibreCat-ID: 45947
Kovács B, Lubich C. Linearly implicit full discretization of surface evolution. Numerische Mathematik. 2018;140(1):121-152. doi:10.1007/s00211-018-0962-6
LibreCat | DOI
 

2018 | Journal Article | LibreCat-ID: 45951
Kovács B. Computing arbitrary Lagrangian Eulerian maps for evolving surfaces. Numerical Methods for Partial Differential Equations. 2018;35(3):1093-1112. doi:10.1002/num.22340
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45941
Kovács B, Li B, Lubich C, Power Guerra CA. Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numerische Mathematik. 2017;137(3):643-689. doi:10.1007/s00211-017-0888-4
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45942
Kovács B, Lubich C. Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type. Numerische Mathematik. 2017;138(2):365-388. doi:10.1007/s00211-017-0909-3
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45940
Kovács B, Lubich C. Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations. Numerische Mathematik. 2017;137(1):91-117. doi:10.1007/s00211-017-0868-8
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45946
Kovács B, Power Guerra CA. Maximum norm stability and error estimates for the evolving surface finite element method. Numerical Methods for Partial Differential Equations. 2017;34(2):518-554. doi:10.1002/num.22212
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45943
Kovács B. High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA Journal of Numerical Analysis. 2017;38(1):430-459. doi:10.1093/imanum/drx013
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45945
Kovács B, Power Guerra CA. Maximum norm stability and error estimates for the evolving surface finite element method. Numerical Methods for Partial Differential Equations. 2017;34(2):518-554. doi:10.1002/num.22212
LibreCat | DOI
 

2016 | Journal Article | LibreCat-ID: 45944
Kovács B, Power Guerra CA. Higher order time discretizations with ALE finite elements for parabolic problems on evolving surfaces. IMA Journal of Numerical Analysis. 2016;38(1):460-494. doi:10.1093/imanum/drw074
LibreCat | DOI
 

2016 | Journal Article | LibreCat-ID: 45936
Kovács B, Power Guerra CA. Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces. Numerical Methods for Partial Differential Equations. 2016;32(4):1200-1231. doi:10.1002/num.22047
LibreCat | DOI
 

2016 | Journal Article | LibreCat-ID: 45939
Kovács B, Li B, Lubich C. A-Stable Time Discretizations Preserve Maximal Parabolic Regularity. SIAM Journal on Numerical Analysis. 2016;54(6):3600-3624. doi:10.1137/15m1040918
LibreCat | DOI
 

Filters and Search Terms

department=841

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed