Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
47 Publications
2021 | Journal Article | LibreCat-ID: 45959
B. Kovács, B. Li, and C. Lubich, “A convergent evolving finite element algorithm for Willmore flow of closed surfaces,” Numerische Mathematik, vol. 149, no. 3, pp. 595–643, 2021, doi: 10.1007/s00211-021-01238-z.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 45954
D. Hipp and B. Kovács, “Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates,” IMA Journal of Numerical Analysis, vol. 41, no. 1, pp. 638–728, 2020, doi: 10.1093/imanum/drz073.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 45953
D. Hipp and B. Kovács, “Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates,” IMA Journal of Numerical Analysis, vol. 41, no. 1, pp. 638–728, 2020, doi: 10.1093/imanum/drz073.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 45955
G. Akrivis, M. Feischl, B. Kovács, and C. Lubich, “Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation,” Mathematics of Computation, vol. 90, no. 329, pp. 995–1038, 2020, doi: 10.1090/mcom/3597.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 45952
B. Kovács, B. Li, and C. Lubich, “A convergent algorithm for forced mean curvature flow driven by diffusion on the surface,” Interfaces and Free Boundaries, vol. 22, no. 4, pp. 443–464, 2020, doi: 10.4171/ifb/446.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 45948
B. Kovács, B. Li, and C. Lubich, “A convergent evolving finite element algorithm for mean curvature flow of closed surfaces,” Numerische Mathematik, vol. 143, no. 4, pp. 797–853, 2019, doi: 10.1007/s00211-019-01074-2.
LibreCat
| DOI
2018 | Habilitation | LibreCat-ID: 45974 |

B. Kovács, Numerical analysis of partial differential equations on and of evolving surfaces. Tübingen, Germany, 2018.
LibreCat
| Download (ext.)
2018 | Journal Article | LibreCat-ID: 45950
J. Karátson, B. Kovács, and S. Korotov, “Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary,” IMA Journal of Numerical Analysis, vol. 40, no. 2, pp. 1241–1265, 2018, doi: 10.1093/imanum/dry086.
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 45949
J. Karátson, B. Kovács, and S. Korotov, “Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary,” IMA Journal of Numerical Analysis, vol. 40, no. 2, pp. 1241–1265, 2018, doi: 10.1093/imanum/dry086.
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 45947
B. Kovács and C. Lubich, “Linearly implicit full discretization of surface evolution,” Numerische Mathematik, vol. 140, no. 1, pp. 121–152, 2018, doi: 10.1007/s00211-018-0962-6.
LibreCat
| DOI
2018 | Journal Article | LibreCat-ID: 45951
B. Kovács, “Computing arbitrary Lagrangian Eulerian maps for evolving surfaces,” Numerical Methods for Partial Differential Equations, vol. 35, no. 3, pp. 1093–1112, 2018, doi: 10.1002/num.22340.
LibreCat
| DOI
2017 | Journal Article | LibreCat-ID: 45941
B. Kovács, B. Li, C. Lubich, and C. A. Power Guerra, “Convergence of finite elements on an evolving surface driven by diffusion on the surface,” Numerische Mathematik, vol. 137, no. 3, pp. 643–689, 2017, doi: 10.1007/s00211-017-0888-4.
LibreCat
| DOI
2017 | Journal Article | LibreCat-ID: 45942
B. Kovács and C. Lubich, “Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type,” Numerische Mathematik, vol. 138, no. 2, pp. 365–388, 2017, doi: 10.1007/s00211-017-0909-3.
LibreCat
| DOI
2017 | Journal Article | LibreCat-ID: 45940
B. Kovács and C. Lubich, “Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations,” Numerische Mathematik, vol. 137, no. 1, pp. 91–117, 2017, doi: 10.1007/s00211-017-0868-8.
LibreCat
| DOI
2017 | Journal Article | LibreCat-ID: 45946
B. Kovács and C. A. Power Guerra, “Maximum norm stability and error estimates for the evolving surface finite element method,” Numerical Methods for Partial Differential Equations, vol. 34, no. 2, pp. 518–554, 2017, doi: 10.1002/num.22212.
LibreCat
| DOI
2017 | Journal Article | LibreCat-ID: 45943
B. Kovács, “High-order evolving surface finite element method for parabolic problems on evolving surfaces,” IMA Journal of Numerical Analysis, vol. 38, no. 1, pp. 430–459, 2017, doi: 10.1093/imanum/drx013.
LibreCat
| DOI
2017 | Journal Article | LibreCat-ID: 45945
B. Kovács and C. A. Power Guerra, “Maximum norm stability and error estimates for the evolving surface finite element method,” Numerical Methods for Partial Differential Equations, vol. 34, no. 2, pp. 518–554, 2017, doi: 10.1002/num.22212.
LibreCat
| DOI
2016 | Journal Article | LibreCat-ID: 45944
B. Kovács and C. A. Power Guerra, “Higher order time discretizations with ALE finite elements for parabolic problems on evolving surfaces,” IMA Journal of Numerical Analysis, vol. 38, no. 1, pp. 460–494, 2016, doi: 10.1093/imanum/drw074.
LibreCat
| DOI
2016 | Journal Article | LibreCat-ID: 45936
B. Kovács and C. A. Power Guerra, “Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces,” Numerical Methods for Partial Differential Equations, vol. 32, no. 4, pp. 1200–1231, 2016, doi: 10.1002/num.22047.
LibreCat
| DOI
2016 | Journal Article | LibreCat-ID: 45939
B. Kovács, B. Li, and C. Lubich, “A-Stable Time Discretizations Preserve Maximal Parabolic Regularity,” SIAM Journal on Numerical Analysis, vol. 54, no. 6, pp. 3600–3624, 2016, doi: 10.1137/15m1040918.
LibreCat
| DOI