Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

47 Publications


2021 | Journal Article | LibreCat-ID: 45959
Kovács, B., Li, B., & Lubich, C. (2021). A convergent evolving finite element algorithm for Willmore flow of closed surfaces. Numerische Mathematik, 149(3), 595–643. https://doi.org/10.1007/s00211-021-01238-z
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45954
Hipp, D., & Kovács, B. (2020). Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates. IMA Journal of Numerical Analysis, 41(1), 638–728. https://doi.org/10.1093/imanum/drz073
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45953
Hipp, D., & Kovács, B. (2020). Finite element error analysis of wave equations with dynamic boundary conditions: L2 estimates. IMA Journal of Numerical Analysis, 41(1), 638–728. https://doi.org/10.1093/imanum/drz073
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45955
Akrivis, G., Feischl, M., Kovács, B., & Lubich, C. (2020). Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation. Mathematics of Computation, 90(329), 995–1038. https://doi.org/10.1090/mcom/3597
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 45952
Kovács, B., Li, B., & Lubich, C. (2020). A convergent algorithm for forced mean curvature flow driven by diffusion on the surface. Interfaces and Free Boundaries, 22(4), 443–464. https://doi.org/10.4171/ifb/446
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 45948
Kovács, B., Li, B., & Lubich, C. (2019). A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numerische Mathematik, 143(4), 797–853. https://doi.org/10.1007/s00211-019-01074-2
LibreCat | DOI
 

2018 | Habilitation | LibreCat-ID: 45974 | OA
Kovács, B. (2018). Numerical analysis of partial differential equations on and of evolving surfaces.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 45950
Karátson, J., Kovács, B., & Korotov, S. (2018). Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary. IMA Journal of Numerical Analysis, 40(2), 1241–1265. https://doi.org/10.1093/imanum/dry086
LibreCat | DOI
 

2018 | Journal Article | LibreCat-ID: 45949
Karátson, J., Kovács, B., & Korotov, S. (2018). Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary. IMA Journal of Numerical Analysis, 40(2), 1241–1265. https://doi.org/10.1093/imanum/dry086
LibreCat | DOI
 

2018 | Journal Article | LibreCat-ID: 45947
Kovács, B., & Lubich, C. (2018). Linearly implicit full discretization of surface evolution. Numerische Mathematik, 140(1), 121–152. https://doi.org/10.1007/s00211-018-0962-6
LibreCat | DOI
 

2018 | Journal Article | LibreCat-ID: 45951
Kovács, B. (2018). Computing arbitrary Lagrangian Eulerian maps for evolving surfaces. Numerical Methods for Partial Differential Equations, 35(3), 1093–1112. https://doi.org/10.1002/num.22340
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45941
Kovács, B., Li, B., Lubich, C., & Power Guerra, C. A. (2017). Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numerische Mathematik, 137(3), 643–689. https://doi.org/10.1007/s00211-017-0888-4
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45942
Kovács, B., & Lubich, C. (2017). Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type. Numerische Mathematik, 138(2), 365–388. https://doi.org/10.1007/s00211-017-0909-3
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45940
Kovács, B., & Lubich, C. (2017). Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations. Numerische Mathematik, 137(1), 91–117. https://doi.org/10.1007/s00211-017-0868-8
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45946
Kovács, B., & Power Guerra, C. A. (2017). Maximum norm stability and error estimates for the evolving surface finite element method. Numerical Methods for Partial Differential Equations, 34(2), 518–554. https://doi.org/10.1002/num.22212
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45943
Kovács, B. (2017). High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA Journal of Numerical Analysis, 38(1), 430–459. https://doi.org/10.1093/imanum/drx013
LibreCat | DOI
 

2017 | Journal Article | LibreCat-ID: 45945
Kovács, B., & Power Guerra, C. A. (2017). Maximum norm stability and error estimates for the evolving surface finite element method. Numerical Methods for Partial Differential Equations, 34(2), 518–554. https://doi.org/10.1002/num.22212
LibreCat | DOI
 

2016 | Journal Article | LibreCat-ID: 45944
Kovács, B., & Power Guerra, C. A. (2016). Higher order time discretizations with ALE finite elements for parabolic problems on evolving surfaces. IMA Journal of Numerical Analysis, 38(1), 460–494. https://doi.org/10.1093/imanum/drw074
LibreCat | DOI
 

2016 | Journal Article | LibreCat-ID: 45936
Kovács, B., & Power Guerra, C. A. (2016). Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces. Numerical Methods for Partial Differential Equations, 32(4), 1200–1231. https://doi.org/10.1002/num.22047
LibreCat | DOI
 

2016 | Journal Article | LibreCat-ID: 45939
Kovács, B., Li, B., & Lubich, C. (2016). A-Stable Time Discretizations Preserve Maximal Parabolic Regularity. SIAM Journal on Numerical Analysis, 54(6), 3600–3624. https://doi.org/10.1137/15m1040918
LibreCat | DOI
 

Filters and Search Terms

department=841

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed