Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
7 Publications
2023 | Journal Article | LibreCat-ID: 53329
Tao, Youshan, and Michael Winkler. “Analysis of a Chemotaxis-SIS Epidemic Model with Unbounded Infection Force.” Nonlinear Analysis: Real World Applications 71 (2023). https://doi.org/10.1016/j.nonrwa.2022.103820.
LibreCat
| DOI
2023 | Journal Article | LibreCat-ID: 43105
Black, Tobias, Mario Fuest, Johannes Lankeit, and Masaaki Mizukami. “Possible Points of Blow-up in Chemotaxis Systems with Spatially Heterogeneous Logistic Source.” Nonlinear Analysis: Real World Applications 73 (2023). https://doi.org/10.1016/j.nonrwa.2023.103868.
LibreCat
| DOI
2023 | Journal Article | LibreCat-ID: 63273
Tao, Youshan, and Michael Winkler. “Analysis of a Chemotaxis-SIS Epidemic Model with Unbounded Infection Force.” Nonlinear Analysis: Real World Applications 71 (2023). https://doi.org/10.1016/j.nonrwa.2022.103820.
LibreCat
| DOI
2021 | Journal Article | LibreCat-ID: 63308
Winkler, Michael. “Small-Signal Solutions of a Two-Dimensional Doubly Degenerate Taxis System Modeling Bacterial Motion in Nutrient-Poor Environments.” Nonlinear Analysis: Real World Applications 63 (2021). https://doi.org/10.1016/j.nonrwa.2021.103407.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63327
Winkler, Michael. “Global Weak Solutions in a Three-Dimensional Keller–Segel–Navier–Stokes System with Gradient-Dependent Flux Limitation.” Nonlinear Analysis: Real World Applications 59 (2020). https://doi.org/10.1016/j.nonrwa.2020.103257.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63351
Krzyżanowski, Piotr, Michael Winkler, and Dariusz Wrzosek. “Migration-Driven Benefit in a Two-Species Nutrient Taxis System.” Nonlinear Analysis: Real World Applications 48 (2019): 94–116. https://doi.org/10.1016/j.nonrwa.2019.01.006.
LibreCat
| DOI
2016 | Journal Article | LibreCat-ID: 34661
Black, Tobias. “Sublinear Signal Production in a Two-Dimensional Keller–Segel–Stokes System.” Nonlinear Analysis: Real World Applications 31 (2016): 593–609. https://doi.org/10.1016/j.nonrwa.2016.03.008.
LibreCat
| DOI