Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
7 Publications
2023 | Journal Article | LibreCat-ID: 53329
Y. Tao and M. Winkler, “Analysis of a chemotaxis-SIS epidemic model with unbounded infection force,” Nonlinear Analysis: Real World Applications, vol. 71, Art. no. 103820, 2023, doi: 10.1016/j.nonrwa.2022.103820.
LibreCat
| DOI
2023 | Journal Article | LibreCat-ID: 43105
T. Black, M. Fuest, J. Lankeit, and M. Mizukami, “Possible points of blow-up in chemotaxis systems with spatially heterogeneous logistic source,” Nonlinear Analysis: Real World Applications, vol. 73, Art. no. 103868, 2023, doi: 10.1016/j.nonrwa.2023.103868.
LibreCat
| DOI
2023 | Journal Article | LibreCat-ID: 63273
Y. Tao and M. Winkler, “Analysis of a chemotaxis-SIS epidemic model with unbounded infection force,” Nonlinear Analysis: Real World Applications, vol. 71, Art. no. 103820, 2023, doi: 10.1016/j.nonrwa.2022.103820.
LibreCat
| DOI
2021 | Journal Article | LibreCat-ID: 63308
M. Winkler, “Small-signal solutions of a two-dimensional doubly degenerate taxis system modeling bacterial motion in nutrient-poor environments,” Nonlinear Analysis: Real World Applications, vol. 63, Art. no. 103407, 2021, doi: 10.1016/j.nonrwa.2021.103407.
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63327
M. Winkler, “Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with gradient-dependent flux limitation,” Nonlinear Analysis: Real World Applications, vol. 59, Art. no. 103257, 2020, doi: 10.1016/j.nonrwa.2020.103257.
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63351
P. Krzyżanowski, M. Winkler, and D. Wrzosek, “Migration-driven benefit in a two-species nutrient taxis system,” Nonlinear Analysis: Real World Applications, vol. 48, pp. 94–116, 2019, doi: 10.1016/j.nonrwa.2019.01.006.
LibreCat
| DOI
2016 | Journal Article | LibreCat-ID: 34661
T. Black, “Sublinear signal production in a two-dimensional Keller–Segel–Stokes system,” Nonlinear Analysis: Real World Applications, vol. 31, pp. 593–609, 2016, doi: 10.1016/j.nonrwa.2016.03.008.
LibreCat
| DOI