Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
7 Publications
2023 | Journal Article | LibreCat-ID: 53329
Tao, Y., & Winkler, M. (2023). Analysis of a chemotaxis-SIS epidemic model with unbounded infection force. Nonlinear Analysis: Real World Applications, 71, Article 103820. https://doi.org/10.1016/j.nonrwa.2022.103820
LibreCat
| DOI
2023 | Journal Article | LibreCat-ID: 43105
Black, T., Fuest, M., Lankeit, J., & Mizukami, M. (2023). Possible points of blow-up in chemotaxis systems with spatially heterogeneous logistic source. Nonlinear Analysis: Real World Applications, 73, Article 103868. https://doi.org/10.1016/j.nonrwa.2023.103868
LibreCat
| DOI
2023 | Journal Article | LibreCat-ID: 63273
Tao, Y., & Winkler, M. (2023). Analysis of a chemotaxis-SIS epidemic model with unbounded infection force. Nonlinear Analysis: Real World Applications, 71, Article 103820. https://doi.org/10.1016/j.nonrwa.2022.103820
LibreCat
| DOI
2021 | Journal Article | LibreCat-ID: 63308
Winkler, M. (2021). Small-signal solutions of a two-dimensional doubly degenerate taxis system modeling bacterial motion in nutrient-poor environments. Nonlinear Analysis: Real World Applications, 63, Article 103407. https://doi.org/10.1016/j.nonrwa.2021.103407
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 63327
Winkler, M. (2020). Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with gradient-dependent flux limitation. Nonlinear Analysis: Real World Applications, 59, Article 103257. https://doi.org/10.1016/j.nonrwa.2020.103257
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 63351
Krzyżanowski, P., Winkler, M., & Wrzosek, D. (2019). Migration-driven benefit in a two-species nutrient taxis system. Nonlinear Analysis: Real World Applications, 48, 94–116. https://doi.org/10.1016/j.nonrwa.2019.01.006
LibreCat
| DOI
2016 | Journal Article | LibreCat-ID: 34661
Black, T. (2016). Sublinear signal production in a two-dimensional Keller–Segel–Stokes system. Nonlinear Analysis: Real World Applications, 31, 593–609. https://doi.org/10.1016/j.nonrwa.2016.03.008
LibreCat
| DOI