66 Publications

Mark all

[66]
2024 | Journal Article | LibreCat-ID: 52723 | OA
Meyer MT, Schindlmayr A. Derivation of Miller’s rule for the nonlinear optical susceptibility of a quantum anharmonic oscillator. Journal of Physics B: Atomic, Molecular and Optical Physics. 2024;57(9). doi:10.1088/1361-6455/ad369c
LibreCat | Files available | DOI | WoS
 
[65]
2022 | Book Chapter | LibreCat-ID: 30288
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. In: Corradi G, Kovács L, eds. New Trends in Lithium Niobate: From Bulk to Nanocrystals. MDPI; 2022:231-248. doi:10.3390/books978-3-0365-3339-1
LibreCat | DOI
 
[64]
2022 | Journal Article | LibreCat-ID: 26627 | OA
Neufeld S, Schindlmayr A, Schmidt WG. Quasiparticle energies and optical response of RbTiOPO4 and KTiOAsO4. Journal of Physics: Materials. 2022;5(1). doi:10.1088/2515-7639/ac3384
LibreCat | Files available | DOI | WoS
 
[63]
2022 | Book Chapter | LibreCat-ID: 29808
Schindlmayr A. Programmierung und Computersimulationen. In: Gerick J, Sommer A, Zimmermann G, eds. Kompetent Prüfungen gestalten: 60 Prüfungsformate für die Hochschullehre. 2nd ed. Waxmann; 2022:270-274. doi:10.36198/9783838558592
LibreCat | DOI
 
[62]
2022 | Journal Article | LibreCat-ID: 44088 | OA
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate. Crystals. 2022;12(11). doi:10.3390/cryst12111586
LibreCat | Files available | DOI | WoS
 
[61]
2021 | Journal Article | LibreCat-ID: 21946 | OA
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. Crystals. 2021;11:542. doi:10.3390/cryst11050542
LibreCat | Files available | DOI | WoS
 
[60]
2021 | Journal Article | LibreCat-ID: 22960 | OA
Bidaraguppe Ramesh N, Schmidt F, Schindlmayr A. Lattice parameters and electronic band gap of orthorhombic potassium sodium niobate K0.5Na0.5NbO3 from density-functional theory. The European Physical Journal B. 2021;94(8). doi:10.1140/epjb/s10051-021-00179-8
LibreCat | Files available | DOI | WoS
 
[59]
2021 | Journal Article | LibreCat-ID: 22761 | OA
Friedrich C, Blügel S, Schindlmayr A. Erratum: Efficient implementation of the GW approximation within the all-electron FLAPW method [Phys. Rev. B 81, 125102 (2010)]. Physical Review B. 2021;104(3). doi:10.1103/PhysRevB.104.039901
LibreCat | Files available | DOI | WoS
 
[58]
2021 | Journal Article | LibreCat-ID: 23418 | OA
Kozub AL, Schindlmayr A, Gerstmann U, Schmidt WG. Polaronic enhancement of second-harmonic generation in lithium niobate. Physical Review B. 2021;104:174110. doi:10.1103/PhysRevB.104.174110
LibreCat | Files available | DOI | WoS | arXiv
 
[57]
2020 | Journal Article | LibreCat-ID: 19190 | OA
Schmidt F, Kozub AL, Biktagirov T, et al. Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations. Physical Review Research. 2020;2(4). doi:10.1103/PhysRevResearch.2.043002
LibreCat | Files available | DOI | WoS
 
[56]
2019 | Journal Article | LibreCat-ID: 10014 | OA
Schmidt F, Riefer A, Schmidt WG, et al. Quasiparticle and excitonic effects in the optical response of KNbO3. Physical Review Materials. 2019;3(5). doi:10.1103/PhysRevMaterials.3.054401
LibreCat | Files available | DOI | WoS
 
[55]
2019 | Journal Article | LibreCat-ID: 13365 | OA
Neufeld S, Bocchini A, Gerstmann U, Schindlmayr A, Schmidt WG. Potassium titanyl phosphate (KTP) quasiparticle energies and optical response. Journal of Physics: Materials. 2019;2:045003. doi:10.1088/2515-7639/ab29ba
LibreCat | Files available | DOI | WoS
 
[54]
2018 | Journal Article | LibreCat-ID: 18466 | OA
Schindlmayr A. Exact formulation of the transverse dynamic spin susceptibility as an initial-value problem. Advances in Mathematical Physics. 2018;2018. doi:10.1155/2018/3732892
LibreCat | Files available | DOI | WoS
 
[53]
2018 | Journal Article | LibreCat-ID: 13410 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Erratum: Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory [Phys. Rev. Materials 1, 034401 (2017)]. Physical Review Materials. 2018;2(1). doi:10.1103/PhysRevMaterials.2.019902
LibreCat | Files available | DOI | WoS
 
[52]
2017 | Journal Article | LibreCat-ID: 7481
Riefer A, Weber N, Mund J, et al. Zn–VI quasiparticle gaps and optical spectra from many-body calculations. Journal of Physics: Condensed Matter. 2017;29(21). doi:10.1088/1361-648x/aa6b2a
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[51]
2017 | Journal Article | LibreCat-ID: 13416 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Polaron optical absorption in congruent lithium niobate from time-dependent density-functional theory. Physical Review Materials. 2017;1(5). doi:10.1103/PhysRevMaterials.1.054406
LibreCat | Files available | DOI | WoS
 
[50]
2017 | Journal Article | LibreCat-ID: 10021 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory. Physical Review Materials. 2017;1(3). doi:10.1103/PhysRevMaterials.1.034401
LibreCat | Files available | DOI | WoS
 
[49]
2017 | Journal Article | LibreCat-ID: 10023 | OA
Schmidt F, Landmann M, Rauls E, et al. Consistent atomic geometries and electronic structure of five phases of potassium niobate from density-functional theory. Advances in Materials Science and Engineering. 2017;2017. doi:10.1155/2017/3981317
LibreCat | Files available | DOI | WoS
 
[48]
2016 | Journal Article | LibreCat-ID: 10024 | OA
Riefer A, Friedrich M, Sanna S, Gerstmann U, Schindlmayr A, Schmidt WG. LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects. Physical Review B. 2016;93(7). doi:10.1103/PhysRevB.93.075205
LibreCat | Files available | DOI | WoS
 
[47]
2016 | Journal Article | LibreCat-ID: 10025
Friedrich M, Schindlmayr A, Schmidt WG, Sanna S. LiTaO3 phonon dispersion and ferroelectric transition calculated from first principles. Physica Status Solidi B. 2016;253(4):683-689. doi:10.1002/pssb.201552576
LibreCat | Files available | DOI | WoS
 
[46]
2015 | Journal Article | LibreCat-ID: 10030
Friedrich M, Riefer A, Sanna S, Schmidt WG, Schindlmayr A. Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory. Journal of Physics: Condensed Matter. 2015;27(38). doi:10.1088/0953-8984/27/38/385402
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[45]
2015 | Journal Article | LibreCat-ID: 18470 | OA
Bouhassoune M, Schindlmayr A. Ab initio study of strain effects on the quasiparticle bands and effective masses in silicon. Advances in Condensed Matter Physics. 2015;2015. doi:10.1155/2015/453125
LibreCat | Files available | DOI | WoS
 
[44]
2014 | Book Chapter | LibreCat-ID: 18471
Friedrich C, Şaşıoğlu E, Müller M, Schindlmayr A, Blügel S. Spin excitations in solids from many-body perturbation theory. In: Di Valentin C, Botti S, Cococcioni M, eds. First Principles Approaches to Spectroscopic Properties of Complex Materials. Vol 347. Topics in Current Chemistry. Berlin, Heidelberg: Springer; 2014:259-301. doi:10.1007/128_2013_518
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[43]
2014 | Book Chapter | LibreCat-ID: 18472
Schindlmayr A. The GW approximation for the electronic self-energy. In: Bach V, Delle Site L, eds. Many-Electron Approaches in Physics, Chemistry and Mathematics. Vol 29. Mathematical Physics Studies. Cham: Springer; 2014:343-357. doi:10.1007/978-3-319-06379-9_19
LibreCat | Files available | DOI
 
[42]
2014 | Journal Article | LibreCat-ID: 18473
Yanagisawa S, Morikawa Y, Schindlmayr A. Theoretical investigation of the band structure of picene single crystals within the GW approximation. Japanese Journal of Applied Physics. 2014;53(5S1). doi:10.7567/jjap.53.05fy02
LibreCat | Files available | DOI | WoS
 
[41]
2014 | Book Chapter | LibreCat-ID: 18474 | OA
Friedrich C, Schindlmayr A. Many-body perturbation theory: The GW approximation. In: Blügel S, Helbig N, Meden V, Wortmann D, eds. Computing Solids: Models, Ab Initio Methods and Supercomputing. Vol 74. Key Technologies. Jülich: Forschungszentrum Jülich; 2014:A4.1-A4.21.
LibreCat | Files available | Download (ext.)
 
[40]
2013 | Book Chapter | LibreCat-ID: 18475
Riefer A, Rohrmüller M, Landmann M, et al. Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations. In: Nagel WE, Kröner DH, Resch MM, eds. High Performance Computing in Science and Engineering ‘13. Transactions of the High Performance Computing Center, Stuttgart. Cham: Springer; 2013:93-104. doi:10.1007/978-3-319-02165-2_8
LibreCat | Files available | DOI | WoS
 
[39]
2013 | Journal Article | LibreCat-ID: 18476 | OA
Yanagisawa S, Morikawa Y, Schindlmayr A. HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation. Physical Review B. 2013;88(11). doi:10.1103/PhysRevB.88.115438
LibreCat | Files available | DOI | WoS
 
[38]
2013 | Journal Article | LibreCat-ID: 13525 | OA
Riefer A, Sanna S, Schindlmayr A, Schmidt WG. Optical response of stoichiometric and congruent lithium niobate from first-principles calculations. Physical Review B. 2013;87(19). doi:10.1103/PhysRevB.87.195208
LibreCat | Files available | DOI | WoS
 
[37]
2013 | Journal Article | LibreCat-ID: 18479 | OA
Schindlmayr A. Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere. Physical Review B. 2013;87(7). doi:10.1103/PhysRevB.87.075104
LibreCat | Files available | DOI | WoS | arXiv
 
[36]
2012 | Journal Article | LibreCat-ID: 18542
Friedrich C, Betzinger M, Schlipf M, Blügel S, Schindlmayr A. Hybrid functionals and GW approximation in the FLAPW method. Journal of Physics: Condensed Matter. 2012;24(29). doi:10.1088/0953-8984/24/29/293201
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[35]
2011 | Journal Article | LibreCat-ID: 4091
Wand M, Schindlmayr A, Meier T, Förstner J. Simulation of the ultrafast nonlinear optical response of metal slabs. Physica Status Solidi B. 2011;248(4):887-891. doi:10.1002/pssb.201001219
LibreCat | Files available | DOI | WoS
 
[34]
2011 | Conference Paper | LibreCat-ID: 4048
Wand M, Schindlmayr A, Meier T, Förstner J. Theoretical approach to the ultrafast nonlinear optical response of metal slabs. In: CLEO:2011 - Laser Applications to Photonic Applications . OSA Technical Digest. Optical Society of America; 2011. doi:10.1364/CLEO_AT.2011.JTuI59
LibreCat | Files available | DOI | WoS
 
[33]
2010 | Book Chapter | LibreCat-ID: 18549
Schindlmayr A, Friedrich C, Şaşıoğlu E, Blügel S. First-principles calculation of electronic excitations in solids with SPEX. In: Dolg FM, ed. Modern and Universal First-Principles Methods for Many-Electron Systems in Chemistry and Physics. Vol 3. Progress in Physical Chemistry. München: Oldenbourg; 2010:67-78. doi:10.1524/9783486711639.67
LibreCat | DOI
 
[32]
2010 | Journal Article | LibreCat-ID: 18562
Bouhassoune M, Schindlmayr A. Electronic structure and effective masses in strained silicon. Physica Status Solidi C. 2010;7(2):460-463. doi:10.1002/pssc.200982470
LibreCat | Files available | DOI | WoS
 
[31]
2010 | Journal Article | LibreCat-ID: 13573
Thierfelder C, Sanna S, Schindlmayr A, Schmidt WG. Do we know the band gap of lithium niobate? Physica Status Solidi C. 2010;7(2):362-365. doi:10.1002/pssc.200982473
LibreCat | Files available | DOI | WoS
 
[30]
2010 | Journal Article | LibreCat-ID: 18560 | OA
Şaşıoğlu E, Schindlmayr A, Friedrich C, Freimuth F, Blügel S. Wannier-function approach to spin excitations in solids. Physical Review B. 2010;81(5). doi:10.1103/PhysRevB.81.054434
LibreCat | Files available | DOI | WoS | arXiv
 
[29]
2010 | Journal Article | LibreCat-ID: 18557
Schindlmayr A, Friedrich C, Şaşıoğlu E, Blügel S. First-principles calculation of electronic excitations in solids with SPEX. Zeitschrift für Physikalische Chemie. 2010;224(3-4):357-368. doi:10.1524/zpch.2010.6110
LibreCat | Files available | DOI | WoS | arXiv
 
[28]
2010 | Journal Article | LibreCat-ID: 18558 | OA
Friedrich C, Blügel S, Schindlmayr A. Efficient implementation of the GW approximation within the all-electron FLAPW method. Physical Review B. 2010;81(12). doi:10.1103/PhysRevB.81.125102
LibreCat | Files available | DOI | WoS | arXiv
 
[27]
2009 | Journal Article | LibreCat-ID: 18632 | OA
Feste SF, Schäpers T, Buca D, et al. Measurement of effective electron mass in biaxial tensile strained silicon on insulator. Applied Physics Letters. 2009;95(18). doi:10.1063/1.3254330
LibreCat | Files available | DOI | WoS
 
[26]
2009 | Conference Paper | LibreCat-ID: 18634 | OA
Schindlmayr A. Optical conductivity of metals from first principles. In: Chigrin DN, ed. Theoretical and Computational Nanophotonics: Proceedings of the 2nd International Workshop. Vol 1176. AIP Conference Proceedings. American Institute of Physics; 2009:157-159. doi:10.1063/1.3253897
LibreCat | Files available | DOI | WoS | arXiv
 
[25]
2009 | Journal Article | LibreCat-ID: 18636
Friedrich C, Schindlmayr A, Blügel S. Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method. Computer Physics Communications. 2009;180(3):347-359. doi:10.1016/j.cpc.2008.10.009
LibreCat | Files available | DOI | WoS | arXiv
 
[24]
2008 | Journal Article | LibreCat-ID: 18564 | OA
Freysoldt C, Eggert P, Rinke P, Schindlmayr A, Scheffler M. Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach. Physical Review B. 2008;77(23). doi:10.1103/PhysRevB.77.235428
LibreCat | Files available | DOI | WoS | arXiv
 
[23]
2007 | Book Chapter | LibreCat-ID: 18588
Schindlmayr A. Interaction of radiation with matter. Part II: Light and electrons. In: Urban K, Schneider CM, Brückel T, Blügel S, eds. Probing the Nanoworld . Vol 34. Matter and Materials. Jülich: Forschungszentrum Jülich; 2007:A1.21-A1.36.
LibreCat | Files available | Download (ext.)
 
[22]
2007 | Journal Article | LibreCat-ID: 18589
Botti S, Schindlmayr A, Del Sole R, Reining L. Time-dependent density-functional theory for extended systems. Reports on Progress in Physics. 2007;70(3):357-407. doi:10.1088/0034-4885/70/3/r02
LibreCat | Files available | DOI | WoS
 
[21]
2007 | Journal Article | LibreCat-ID: 18591 | OA
Friák M, Schindlmayr A, Scheffler M. Ab initio study of the half-metal to metal transition in strained magnetite. New Journal of Physics. 2007;9(1). doi:10.1088/1367-2630/9/1/005
LibreCat | Files available | DOI | WoS
 
[20]
2007 | Book Chapter | LibreCat-ID: 18593
Schindlmayr A, Scheffler M. Quasiparticle calculations for point defects at semiconductor surfaces. In: Drabold DA, Estreicher SK, eds. Theory of Defects in Semiconductors. Vol 104. Topics in Applied Physics. Berlin, Heidelberg: Springer; 2007:165-192. doi:10.1007/11690320_8
LibreCat | Files available | DOI | WoS
 
[19]
2007 | Journal Article | LibreCat-ID: 18595
Freysoldt C, Eggert P, Rinke P, Schindlmayr A, Godby RW, Scheffler M. Dielectric anisotropy in the GW space–time method. Computer Physics Communications. 2007;176(1):1-13. doi:10.1016/j.cpc.2006.07.018
LibreCat | Files available | DOI | WoS | arXiv
 
[18]
2006 | Book Chapter | LibreCat-ID: 18601 | OA
Friedrich C, Schindlmayr A. Many-body perturbation theory: The GW approximation. In: Blügel S, Gompper G, Koch E, Müller-Krumbhaar H, Spatschek R, Winkler RG, eds. Computational Condensed Matter Physics. Vol 32. Matter and Materials. Jülich: Forschungszentrum Jülich; 2006:A5.1-A5.21.
LibreCat | Files available | Download (ext.)
 
[17]
2006 | Book Chapter | LibreCat-ID: 18603 | OA
Schindlmayr A. Time-dependent density-functional theory. In: Blügel S, Gompper G, Koch E, Müller-Krumbhaar H, Spatschek R, Winkler RG, eds. Computational Condensed Matter Physics. Vol 32. Matter and Materials. Jülich: Forschungszentrum Jülich; 2006:A4.1-A4.19.
LibreCat | Files available | Download (ext.)
 
[16]
2006 | Book Chapter | LibreCat-ID: 18606 | OA
Friedrich C, Schindlmayr A. Many-body perturbation theory: The GW approximation. In: Grotendorst J, Blügel S, Marx D, eds. Computational Nanoscience: Do It Yourself!. Vol 31. NIC Series. Jülich: John von Neumann Institute for Computing; 2006:335-355.
LibreCat | Files available | Download (ext.)
 
[15]
2006 | Journal Article | LibreCat-ID: 18597 | OA
Hedström M, Schindlmayr A, Schwarz G, Scheffler M. Quasiparticle corrections to the electronic properties of anion vacancies at GaAs(110) and InP(110). Physical Review Letters. 2006;97(22). doi:10.1103/PhysRevLett.97.226401
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC | arXiv
 
[14]
2006 | Journal Article | LibreCat-ID: 18599 | OA
Friedrich C, Schindlmayr A, Blügel S, Kotani T. Elimination of the linearization error in GW calculations based on the linearized augmented-plane-wave method. Physical Review B. 2006;74(4). doi:10.1103/physrevb.74.045104
LibreCat | Files available | DOI | WoS | arXiv
 
[13]
2005 | Book Chapter | LibreCat-ID: 18608 | OA
Schindlmayr A. Magnetic excitations. In: Blügel S, Brückel T, Schneider CM, eds. Magnetism Goes Nano. Vol 26. Matter and Materials. Jülich: Forschungszentrum Jülich; 2005:D1.1-D1.20.
LibreCat | Files available | Download (ext.)
 
[12]
2002 | Journal Article | LibreCat-ID: 18610
Hedström M, Schindlmayr A, Scheffler M. Quasiparticle calculations for point defects on semiconductor surfaces. Physica Status Solidi B. 2002;234(1):346-353. doi:10.1002/1521-3951(200211)234:1%3C346::AID-PSSB346%3E3.0.CO;2-J
LibreCat | Files available | DOI | WoS | arXiv
 
[11]
2001 | Journal Article | LibreCat-ID: 18612 | OA
Schindlmayr A, García-González P, Godby RW. Diagrammatic self-energy approximations and the total particle number. Physical Review B. 2001;64(23). doi:10.1103/PhysRevB.64.235106
LibreCat | Files available | DOI | WoS | arXiv
 
[10]
2001 | Journal Article | LibreCat-ID: 18615 | OA
Tatarczyk K, Schindlmayr A, Scheffler M. Exchange-correlation kernels for excited states in solids. Physical Review B. 2001;63(23). doi:10.1103/PhysRevB.63.235106
LibreCat | Files available | DOI | WoS | arXiv
 
[9]
2001 | Book Chapter | LibreCat-ID: 18614
Schindlmayr A. Self-consistency and vertex corrections beyond the GW approximation. In: Pandalai SG, ed. Recent Research Developments in Physics. Vol 2. Transworld Research Network; 2001:277-288.
LibreCat | arXiv
 
[8]
2000 | Journal Article | LibreCat-ID: 18617 | OA
Schindlmayr A. Decay properties of the one-particle Green function in real space and imaginary time. Physical Review B. 2000;62(19):12573-12576. doi:10.1103/PhysRevB.62.12573
LibreCat | Files available | DOI | WoS | arXiv
 
[7]
1999 | Journal Article | LibreCat-ID: 18619
Schindlmayr A. Universality of the Hohenberg–Kohn functional. American Journal of Physics. 1999;67(10):933-934. doi:10.1119/1.19156
LibreCat | DOI | WoS | arXiv
 
[6]
1998 | Journal Article | LibreCat-ID: 18620 | OA
Schindlmayr A, Pollehn TJ, Godby RW. Spectra and total energies from self-consistent many-body perturbation theory. Physical Review B. 1998;58(19):12684-12690. doi:10.1103/PhysRevB.58.12684
LibreCat | Files available | DOI | WoS | arXiv
 
[5]
1998 | Journal Article | LibreCat-ID: 18622 | OA
Schindlmayr A, Godby RW. Systematic vertex corrections through iterative solution of Hedin’s equations beyond the GW approximation. Physical Review Letters. 1998;80(8):1702-1705. doi:10.1103/PhysRevLett.80.1702
LibreCat | Files available | DOI | WoS | arXiv
 
[4]
1998 | Journal Article | LibreCat-ID: 18624
Pollehn TJ, Schindlmayr A, Godby RW. Assessment of the GW approximation using Hubbard chains. Journal of Physics: Condensed Matter. 1998;10(6):1273-1283. doi:10.1088/0953-8984/10/6/011
LibreCat | Files available | DOI | WoS | arXiv
 
[3]
1997 | Journal Article | LibreCat-ID: 18626
Schindlmayr A. Excitons with anisotropic effective mass. European Journal of Physics. 1997;18(5):374-376. doi:10.1088/0143-0807/18/5/011
LibreCat | Files available | DOI | arXiv
 
[2]
1997 | Journal Article | LibreCat-ID: 18628 | OA
Schindlmayr A. Violation of particle number conservation in the GW approximation. Physical Review B. 1997;56(7):3528-3531. doi:10.1103/PhysRevB.56.3528
LibreCat | Files available | DOI | WoS | arXiv
 
[1]
1995 | Journal Article | LibreCat-ID: 18630 | OA
Schindlmayr A, Godby RW. Density-functional theory and the v-representability problem for model strongly correlated electron systems. Physical Review B. 1995;51(16):10427-10435. doi:10.1103/PhysRevB.51.10427
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed

66 Publications

Mark all

[66]
2024 | Journal Article | LibreCat-ID: 52723 | OA
Meyer MT, Schindlmayr A. Derivation of Miller’s rule for the nonlinear optical susceptibility of a quantum anharmonic oscillator. Journal of Physics B: Atomic, Molecular and Optical Physics. 2024;57(9). doi:10.1088/1361-6455/ad369c
LibreCat | Files available | DOI | WoS
 
[65]
2022 | Book Chapter | LibreCat-ID: 30288
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. In: Corradi G, Kovács L, eds. New Trends in Lithium Niobate: From Bulk to Nanocrystals. MDPI; 2022:231-248. doi:10.3390/books978-3-0365-3339-1
LibreCat | DOI
 
[64]
2022 | Journal Article | LibreCat-ID: 26627 | OA
Neufeld S, Schindlmayr A, Schmidt WG. Quasiparticle energies and optical response of RbTiOPO4 and KTiOAsO4. Journal of Physics: Materials. 2022;5(1). doi:10.1088/2515-7639/ac3384
LibreCat | Files available | DOI | WoS
 
[63]
2022 | Book Chapter | LibreCat-ID: 29808
Schindlmayr A. Programmierung und Computersimulationen. In: Gerick J, Sommer A, Zimmermann G, eds. Kompetent Prüfungen gestalten: 60 Prüfungsformate für die Hochschullehre. 2nd ed. Waxmann; 2022:270-274. doi:10.36198/9783838558592
LibreCat | DOI
 
[62]
2022 | Journal Article | LibreCat-ID: 44088 | OA
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. A density-functional theory study of hole and defect-bound exciton polarons in lithium niobate. Crystals. 2022;12(11). doi:10.3390/cryst12111586
LibreCat | Files available | DOI | WoS
 
[61]
2021 | Journal Article | LibreCat-ID: 21946 | OA
Schmidt F, Kozub AL, Gerstmann U, Schmidt WG, Schindlmayr A. Electron polarons in lithium niobate: Charge localization, lattice deformation, and optical response. Crystals. 2021;11:542. doi:10.3390/cryst11050542
LibreCat | Files available | DOI | WoS
 
[60]
2021 | Journal Article | LibreCat-ID: 22960 | OA
Bidaraguppe Ramesh N, Schmidt F, Schindlmayr A. Lattice parameters and electronic band gap of orthorhombic potassium sodium niobate K0.5Na0.5NbO3 from density-functional theory. The European Physical Journal B. 2021;94(8). doi:10.1140/epjb/s10051-021-00179-8
LibreCat | Files available | DOI | WoS
 
[59]
2021 | Journal Article | LibreCat-ID: 22761 | OA
Friedrich C, Blügel S, Schindlmayr A. Erratum: Efficient implementation of the GW approximation within the all-electron FLAPW method [Phys. Rev. B 81, 125102 (2010)]. Physical Review B. 2021;104(3). doi:10.1103/PhysRevB.104.039901
LibreCat | Files available | DOI | WoS
 
[58]
2021 | Journal Article | LibreCat-ID: 23418 | OA
Kozub AL, Schindlmayr A, Gerstmann U, Schmidt WG. Polaronic enhancement of second-harmonic generation in lithium niobate. Physical Review B. 2021;104:174110. doi:10.1103/PhysRevB.104.174110
LibreCat | Files available | DOI | WoS | arXiv
 
[57]
2020 | Journal Article | LibreCat-ID: 19190 | OA
Schmidt F, Kozub AL, Biktagirov T, et al. Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations. Physical Review Research. 2020;2(4). doi:10.1103/PhysRevResearch.2.043002
LibreCat | Files available | DOI | WoS
 
[56]
2019 | Journal Article | LibreCat-ID: 10014 | OA
Schmidt F, Riefer A, Schmidt WG, et al. Quasiparticle and excitonic effects in the optical response of KNbO3. Physical Review Materials. 2019;3(5). doi:10.1103/PhysRevMaterials.3.054401
LibreCat | Files available | DOI | WoS
 
[55]
2019 | Journal Article | LibreCat-ID: 13365 | OA
Neufeld S, Bocchini A, Gerstmann U, Schindlmayr A, Schmidt WG. Potassium titanyl phosphate (KTP) quasiparticle energies and optical response. Journal of Physics: Materials. 2019;2:045003. doi:10.1088/2515-7639/ab29ba
LibreCat | Files available | DOI | WoS
 
[54]
2018 | Journal Article | LibreCat-ID: 18466 | OA
Schindlmayr A. Exact formulation of the transverse dynamic spin susceptibility as an initial-value problem. Advances in Mathematical Physics. 2018;2018. doi:10.1155/2018/3732892
LibreCat | Files available | DOI | WoS
 
[53]
2018 | Journal Article | LibreCat-ID: 13410 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Erratum: Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory [Phys. Rev. Materials 1, 034401 (2017)]. Physical Review Materials. 2018;2(1). doi:10.1103/PhysRevMaterials.2.019902
LibreCat | Files available | DOI | WoS
 
[52]
2017 | Journal Article | LibreCat-ID: 7481
Riefer A, Weber N, Mund J, et al. Zn–VI quasiparticle gaps and optical spectra from many-body calculations. Journal of Physics: Condensed Matter. 2017;29(21). doi:10.1088/1361-648x/aa6b2a
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[51]
2017 | Journal Article | LibreCat-ID: 13416 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Polaron optical absorption in congruent lithium niobate from time-dependent density-functional theory. Physical Review Materials. 2017;1(5). doi:10.1103/PhysRevMaterials.1.054406
LibreCat | Files available | DOI | WoS
 
[50]
2017 | Journal Article | LibreCat-ID: 10021 | OA
Friedrich M, Schmidt WG, Schindlmayr A, Sanna S. Optical properties of titanium-doped lithium niobate from time-dependent density-functional theory. Physical Review Materials. 2017;1(3). doi:10.1103/PhysRevMaterials.1.034401
LibreCat | Files available | DOI | WoS
 
[49]
2017 | Journal Article | LibreCat-ID: 10023 | OA
Schmidt F, Landmann M, Rauls E, et al. Consistent atomic geometries and electronic structure of five phases of potassium niobate from density-functional theory. Advances in Materials Science and Engineering. 2017;2017. doi:10.1155/2017/3981317
LibreCat | Files available | DOI | WoS
 
[48]
2016 | Journal Article | LibreCat-ID: 10024 | OA
Riefer A, Friedrich M, Sanna S, Gerstmann U, Schindlmayr A, Schmidt WG. LiNbO3 electronic structure: Many-body interactions, spin-orbit coupling, and thermal effects. Physical Review B. 2016;93(7). doi:10.1103/PhysRevB.93.075205
LibreCat | Files available | DOI | WoS
 
[47]
2016 | Journal Article | LibreCat-ID: 10025
Friedrich M, Schindlmayr A, Schmidt WG, Sanna S. LiTaO3 phonon dispersion and ferroelectric transition calculated from first principles. Physica Status Solidi B. 2016;253(4):683-689. doi:10.1002/pssb.201552576
LibreCat | Files available | DOI | WoS
 
[46]
2015 | Journal Article | LibreCat-ID: 10030
Friedrich M, Riefer A, Sanna S, Schmidt WG, Schindlmayr A. Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory. Journal of Physics: Condensed Matter. 2015;27(38). doi:10.1088/0953-8984/27/38/385402
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[45]
2015 | Journal Article | LibreCat-ID: 18470 | OA
Bouhassoune M, Schindlmayr A. Ab initio study of strain effects on the quasiparticle bands and effective masses in silicon. Advances in Condensed Matter Physics. 2015;2015. doi:10.1155/2015/453125
LibreCat | Files available | DOI | WoS
 
[44]
2014 | Book Chapter | LibreCat-ID: 18471
Friedrich C, Şaşıoğlu E, Müller M, Schindlmayr A, Blügel S. Spin excitations in solids from many-body perturbation theory. In: Di Valentin C, Botti S, Cococcioni M, eds. First Principles Approaches to Spectroscopic Properties of Complex Materials. Vol 347. Topics in Current Chemistry. Berlin, Heidelberg: Springer; 2014:259-301. doi:10.1007/128_2013_518
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[43]
2014 | Book Chapter | LibreCat-ID: 18472
Schindlmayr A. The GW approximation for the electronic self-energy. In: Bach V, Delle Site L, eds. Many-Electron Approaches in Physics, Chemistry and Mathematics. Vol 29. Mathematical Physics Studies. Cham: Springer; 2014:343-357. doi:10.1007/978-3-319-06379-9_19
LibreCat | Files available | DOI
 
[42]
2014 | Journal Article | LibreCat-ID: 18473
Yanagisawa S, Morikawa Y, Schindlmayr A. Theoretical investigation of the band structure of picene single crystals within the GW approximation. Japanese Journal of Applied Physics. 2014;53(5S1). doi:10.7567/jjap.53.05fy02
LibreCat | Files available | DOI | WoS
 
[41]
2014 | Book Chapter | LibreCat-ID: 18474 | OA
Friedrich C, Schindlmayr A. Many-body perturbation theory: The GW approximation. In: Blügel S, Helbig N, Meden V, Wortmann D, eds. Computing Solids: Models, Ab Initio Methods and Supercomputing. Vol 74. Key Technologies. Jülich: Forschungszentrum Jülich; 2014:A4.1-A4.21.
LibreCat | Files available | Download (ext.)
 
[40]
2013 | Book Chapter | LibreCat-ID: 18475
Riefer A, Rohrmüller M, Landmann M, et al. Lithium niobate dielectric function and second-order polarizability tensor from massively parallel ab initio calculations. In: Nagel WE, Kröner DH, Resch MM, eds. High Performance Computing in Science and Engineering ‘13. Transactions of the High Performance Computing Center, Stuttgart. Cham: Springer; 2013:93-104. doi:10.1007/978-3-319-02165-2_8
LibreCat | Files available | DOI | WoS
 
[39]
2013 | Journal Article | LibreCat-ID: 18476 | OA
Yanagisawa S, Morikawa Y, Schindlmayr A. HOMO band dispersion of crystalline rubrene: Effects of self-energy corrections within the GW approximation. Physical Review B. 2013;88(11). doi:10.1103/PhysRevB.88.115438
LibreCat | Files available | DOI | WoS
 
[38]
2013 | Journal Article | LibreCat-ID: 13525 | OA
Riefer A, Sanna S, Schindlmayr A, Schmidt WG. Optical response of stoichiometric and congruent lithium niobate from first-principles calculations. Physical Review B. 2013;87(19). doi:10.1103/PhysRevB.87.195208
LibreCat | Files available | DOI | WoS
 
[37]
2013 | Journal Article | LibreCat-ID: 18479 | OA
Schindlmayr A. Analytic evaluation of the electronic self-energy in the GW approximation for two electrons on a sphere. Physical Review B. 2013;87(7). doi:10.1103/PhysRevB.87.075104
LibreCat | Files available | DOI | WoS | arXiv
 
[36]
2012 | Journal Article | LibreCat-ID: 18542
Friedrich C, Betzinger M, Schlipf M, Blügel S, Schindlmayr A. Hybrid functionals and GW approximation in the FLAPW method. Journal of Physics: Condensed Matter. 2012;24(29). doi:10.1088/0953-8984/24/29/293201
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC
 
[35]
2011 | Journal Article | LibreCat-ID: 4091
Wand M, Schindlmayr A, Meier T, Förstner J. Simulation of the ultrafast nonlinear optical response of metal slabs. Physica Status Solidi B. 2011;248(4):887-891. doi:10.1002/pssb.201001219
LibreCat | Files available | DOI | WoS
 
[34]
2011 | Conference Paper | LibreCat-ID: 4048
Wand M, Schindlmayr A, Meier T, Förstner J. Theoretical approach to the ultrafast nonlinear optical response of metal slabs. In: CLEO:2011 - Laser Applications to Photonic Applications . OSA Technical Digest. Optical Society of America; 2011. doi:10.1364/CLEO_AT.2011.JTuI59
LibreCat | Files available | DOI | WoS
 
[33]
2010 | Book Chapter | LibreCat-ID: 18549
Schindlmayr A, Friedrich C, Şaşıoğlu E, Blügel S. First-principles calculation of electronic excitations in solids with SPEX. In: Dolg FM, ed. Modern and Universal First-Principles Methods for Many-Electron Systems in Chemistry and Physics. Vol 3. Progress in Physical Chemistry. München: Oldenbourg; 2010:67-78. doi:10.1524/9783486711639.67
LibreCat | DOI
 
[32]
2010 | Journal Article | LibreCat-ID: 18562
Bouhassoune M, Schindlmayr A. Electronic structure and effective masses in strained silicon. Physica Status Solidi C. 2010;7(2):460-463. doi:10.1002/pssc.200982470
LibreCat | Files available | DOI | WoS
 
[31]
2010 | Journal Article | LibreCat-ID: 13573
Thierfelder C, Sanna S, Schindlmayr A, Schmidt WG. Do we know the band gap of lithium niobate? Physica Status Solidi C. 2010;7(2):362-365. doi:10.1002/pssc.200982473
LibreCat | Files available | DOI | WoS
 
[30]
2010 | Journal Article | LibreCat-ID: 18560 | OA
Şaşıoğlu E, Schindlmayr A, Friedrich C, Freimuth F, Blügel S. Wannier-function approach to spin excitations in solids. Physical Review B. 2010;81(5). doi:10.1103/PhysRevB.81.054434
LibreCat | Files available | DOI | WoS | arXiv
 
[29]
2010 | Journal Article | LibreCat-ID: 18557
Schindlmayr A, Friedrich C, Şaşıoğlu E, Blügel S. First-principles calculation of electronic excitations in solids with SPEX. Zeitschrift für Physikalische Chemie. 2010;224(3-4):357-368. doi:10.1524/zpch.2010.6110
LibreCat | Files available | DOI | WoS | arXiv
 
[28]
2010 | Journal Article | LibreCat-ID: 18558 | OA
Friedrich C, Blügel S, Schindlmayr A. Efficient implementation of the GW approximation within the all-electron FLAPW method. Physical Review B. 2010;81(12). doi:10.1103/PhysRevB.81.125102
LibreCat | Files available | DOI | WoS | arXiv
 
[27]
2009 | Journal Article | LibreCat-ID: 18632 | OA
Feste SF, Schäpers T, Buca D, et al. Measurement of effective electron mass in biaxial tensile strained silicon on insulator. Applied Physics Letters. 2009;95(18). doi:10.1063/1.3254330
LibreCat | Files available | DOI | WoS
 
[26]
2009 | Conference Paper | LibreCat-ID: 18634 | OA
Schindlmayr A. Optical conductivity of metals from first principles. In: Chigrin DN, ed. Theoretical and Computational Nanophotonics: Proceedings of the 2nd International Workshop. Vol 1176. AIP Conference Proceedings. American Institute of Physics; 2009:157-159. doi:10.1063/1.3253897
LibreCat | Files available | DOI | WoS | arXiv
 
[25]
2009 | Journal Article | LibreCat-ID: 18636
Friedrich C, Schindlmayr A, Blügel S. Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method. Computer Physics Communications. 2009;180(3):347-359. doi:10.1016/j.cpc.2008.10.009
LibreCat | Files available | DOI | WoS | arXiv
 
[24]
2008 | Journal Article | LibreCat-ID: 18564 | OA
Freysoldt C, Eggert P, Rinke P, Schindlmayr A, Scheffler M. Screening in two dimensions: GW calculations for surfaces and thin films using the repeated-slab approach. Physical Review B. 2008;77(23). doi:10.1103/PhysRevB.77.235428
LibreCat | Files available | DOI | WoS | arXiv
 
[23]
2007 | Book Chapter | LibreCat-ID: 18588
Schindlmayr A. Interaction of radiation with matter. Part II: Light and electrons. In: Urban K, Schneider CM, Brückel T, Blügel S, eds. Probing the Nanoworld . Vol 34. Matter and Materials. Jülich: Forschungszentrum Jülich; 2007:A1.21-A1.36.
LibreCat | Files available | Download (ext.)
 
[22]
2007 | Journal Article | LibreCat-ID: 18589
Botti S, Schindlmayr A, Del Sole R, Reining L. Time-dependent density-functional theory for extended systems. Reports on Progress in Physics. 2007;70(3):357-407. doi:10.1088/0034-4885/70/3/r02
LibreCat | Files available | DOI | WoS
 
[21]
2007 | Journal Article | LibreCat-ID: 18591 | OA
Friák M, Schindlmayr A, Scheffler M. Ab initio study of the half-metal to metal transition in strained magnetite. New Journal of Physics. 2007;9(1). doi:10.1088/1367-2630/9/1/005
LibreCat | Files available | DOI | WoS
 
[20]
2007 | Book Chapter | LibreCat-ID: 18593
Schindlmayr A, Scheffler M. Quasiparticle calculations for point defects at semiconductor surfaces. In: Drabold DA, Estreicher SK, eds. Theory of Defects in Semiconductors. Vol 104. Topics in Applied Physics. Berlin, Heidelberg: Springer; 2007:165-192. doi:10.1007/11690320_8
LibreCat | Files available | DOI | WoS
 
[19]
2007 | Journal Article | LibreCat-ID: 18595
Freysoldt C, Eggert P, Rinke P, Schindlmayr A, Godby RW, Scheffler M. Dielectric anisotropy in the GW space–time method. Computer Physics Communications. 2007;176(1):1-13. doi:10.1016/j.cpc.2006.07.018
LibreCat | Files available | DOI | WoS | arXiv
 
[18]
2006 | Book Chapter | LibreCat-ID: 18601 | OA
Friedrich C, Schindlmayr A. Many-body perturbation theory: The GW approximation. In: Blügel S, Gompper G, Koch E, Müller-Krumbhaar H, Spatschek R, Winkler RG, eds. Computational Condensed Matter Physics. Vol 32. Matter and Materials. Jülich: Forschungszentrum Jülich; 2006:A5.1-A5.21.
LibreCat | Files available | Download (ext.)
 
[17]
2006 | Book Chapter | LibreCat-ID: 18603 | OA
Schindlmayr A. Time-dependent density-functional theory. In: Blügel S, Gompper G, Koch E, Müller-Krumbhaar H, Spatschek R, Winkler RG, eds. Computational Condensed Matter Physics. Vol 32. Matter and Materials. Jülich: Forschungszentrum Jülich; 2006:A4.1-A4.19.
LibreCat | Files available | Download (ext.)
 
[16]
2006 | Book Chapter | LibreCat-ID: 18606 | OA
Friedrich C, Schindlmayr A. Many-body perturbation theory: The GW approximation. In: Grotendorst J, Blügel S, Marx D, eds. Computational Nanoscience: Do It Yourself!. Vol 31. NIC Series. Jülich: John von Neumann Institute for Computing; 2006:335-355.
LibreCat | Files available | Download (ext.)
 
[15]
2006 | Journal Article | LibreCat-ID: 18597 | OA
Hedström M, Schindlmayr A, Schwarz G, Scheffler M. Quasiparticle corrections to the electronic properties of anion vacancies at GaAs(110) and InP(110). Physical Review Letters. 2006;97(22). doi:10.1103/PhysRevLett.97.226401
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC | arXiv
 
[14]
2006 | Journal Article | LibreCat-ID: 18599 | OA
Friedrich C, Schindlmayr A, Blügel S, Kotani T. Elimination of the linearization error in GW calculations based on the linearized augmented-plane-wave method. Physical Review B. 2006;74(4). doi:10.1103/physrevb.74.045104
LibreCat | Files available | DOI | WoS | arXiv
 
[13]
2005 | Book Chapter | LibreCat-ID: 18608 | OA
Schindlmayr A. Magnetic excitations. In: Blügel S, Brückel T, Schneider CM, eds. Magnetism Goes Nano. Vol 26. Matter and Materials. Jülich: Forschungszentrum Jülich; 2005:D1.1-D1.20.
LibreCat | Files available | Download (ext.)
 
[12]
2002 | Journal Article | LibreCat-ID: 18610
Hedström M, Schindlmayr A, Scheffler M. Quasiparticle calculations for point defects on semiconductor surfaces. Physica Status Solidi B. 2002;234(1):346-353. doi:10.1002/1521-3951(200211)234:1%3C346::AID-PSSB346%3E3.0.CO;2-J
LibreCat | Files available | DOI | WoS | arXiv
 
[11]
2001 | Journal Article | LibreCat-ID: 18612 | OA
Schindlmayr A, García-González P, Godby RW. Diagrammatic self-energy approximations and the total particle number. Physical Review B. 2001;64(23). doi:10.1103/PhysRevB.64.235106
LibreCat | Files available | DOI | WoS | arXiv
 
[10]
2001 | Journal Article | LibreCat-ID: 18615 | OA
Tatarczyk K, Schindlmayr A, Scheffler M. Exchange-correlation kernels for excited states in solids. Physical Review B. 2001;63(23). doi:10.1103/PhysRevB.63.235106
LibreCat | Files available | DOI | WoS | arXiv
 
[9]
2001 | Book Chapter | LibreCat-ID: 18614
Schindlmayr A. Self-consistency and vertex corrections beyond the GW approximation. In: Pandalai SG, ed. Recent Research Developments in Physics. Vol 2. Transworld Research Network; 2001:277-288.
LibreCat | arXiv
 
[8]
2000 | Journal Article | LibreCat-ID: 18617 | OA
Schindlmayr A. Decay properties of the one-particle Green function in real space and imaginary time. Physical Review B. 2000;62(19):12573-12576. doi:10.1103/PhysRevB.62.12573
LibreCat | Files available | DOI | WoS | arXiv
 
[7]
1999 | Journal Article | LibreCat-ID: 18619
Schindlmayr A. Universality of the Hohenberg–Kohn functional. American Journal of Physics. 1999;67(10):933-934. doi:10.1119/1.19156
LibreCat | DOI | WoS | arXiv
 
[6]
1998 | Journal Article | LibreCat-ID: 18620 | OA
Schindlmayr A, Pollehn TJ, Godby RW. Spectra and total energies from self-consistent many-body perturbation theory. Physical Review B. 1998;58(19):12684-12690. doi:10.1103/PhysRevB.58.12684
LibreCat | Files available | DOI | WoS | arXiv
 
[5]
1998 | Journal Article | LibreCat-ID: 18622 | OA
Schindlmayr A, Godby RW. Systematic vertex corrections through iterative solution of Hedin’s equations beyond the GW approximation. Physical Review Letters. 1998;80(8):1702-1705. doi:10.1103/PhysRevLett.80.1702
LibreCat | Files available | DOI | WoS | arXiv
 
[4]
1998 | Journal Article | LibreCat-ID: 18624
Pollehn TJ, Schindlmayr A, Godby RW. Assessment of the GW approximation using Hubbard chains. Journal of Physics: Condensed Matter. 1998;10(6):1273-1283. doi:10.1088/0953-8984/10/6/011
LibreCat | Files available | DOI | WoS | arXiv
 
[3]
1997 | Journal Article | LibreCat-ID: 18626
Schindlmayr A. Excitons with anisotropic effective mass. European Journal of Physics. 1997;18(5):374-376. doi:10.1088/0143-0807/18/5/011
LibreCat | Files available | DOI | arXiv
 
[2]
1997 | Journal Article | LibreCat-ID: 18628 | OA
Schindlmayr A. Violation of particle number conservation in the GW approximation. Physical Review B. 1997;56(7):3528-3531. doi:10.1103/PhysRevB.56.3528
LibreCat | Files available | DOI | WoS | arXiv
 
[1]
1995 | Journal Article | LibreCat-ID: 18630 | OA
Schindlmayr A, Godby RW. Density-functional theory and the v-representability problem for model strongly correlated electron systems. Physical Review B. 1995;51(16):10427-10435. doi:10.1103/PhysRevB.51.10427
LibreCat | Files available | DOI | WoS | PubMed | Europe PMC | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed