Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

434 Publications


2021 | Journal Article | LibreCat-ID: 21004
Wever, M. D., Tornede, A., Mohr, F., & Hüllermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/tpami.2021.3051276
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21092
Mohr, F., Wever, M. D., Tornede, A., & Hüllermeier, E. (n.d.). Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence.
LibreCat
 

2021 | Conference Paper | LibreCat-ID: 21198
Hanselle, J. M., Tornede, A., Wever, M. D., & Hüllermeier, E. (2021). Algorithm Selection as Superset Learning: Constructing Algorithm Selectors from Imprecise Performance Data. Presented at the The 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2021), Delhi, India.
LibreCat
 

2021 | Journal Article | LibreCat-ID: 21535
Bengs, V., Busa-Fekete, R., El Mesaoudi-Paul, A., & Hüllermeier, E. (2021). Preference-based Online Learning with Dueling Bandits: A Survey. Journal of Machine Learning Research, 22(7), 1–108.
LibreCat
 

2021 | Preprint | LibreCat-ID: 21600
Dellnitz, M., Hüllermeier, E., Lücke, M., Ober-Blöbaum, S., Offen, C., Peitz, S., & Pfannschmidt, K. (2021). Efficient time stepping for numerical integration using reinforcement  learning. ArXiv:2104.03562.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 19953
Damke, C., Melnikov, V., & Hüllermeier, E. (2020). A Novel Higher-order Weisfeiler-Lehman Graph Convolution. In S. Jialin Pan & M. Sugiyama (Eds.), Proceedings of the 12th Asian Conference on Machine Learning (ACML 2020) (Vol. 129, pp. 49–64). Bangkok, Thailand: PMLR.
LibreCat | Files available | arXiv
 

2020 | Conference Paper | LibreCat-ID: 17407
Tornede, A., Wever, M. D., & Hüllermeier, E. (2020). Extreme Algorithm Selection with Dyadic Feature Representation. In Discovery Science.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 17408
Hanselle, J. M., Tornede, A., Wever, M. D., & Hüllermeier, E. (2020). Hybrid Ranking and Regression for Algorithm Selection. In KI 2020: Advances in Artificial Intelligence.
LibreCat
 

2020 | Preprint | LibreCat-ID: 17605
Heid, S. H., Wever, M. D., & Hüllermeier, E. (n.d.). Reliable Part-of-Speech Tagging of Historical Corpora through Set-Valued Prediction. Journal of Data Mining and Digital Humanities. episciences.
LibreCat | Download (ext.)
 

2020 | Book Chapter | LibreCat-ID: 18014
El Mesaoudi-Paul, A., Weiß, D., Bengs, V., Hüllermeier, E., & Tierney, K. (2020). Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach. In Learning and Intelligent Optimization. LION 2020. (Vol. 12096, pp. 216–232). Cham: Springer. https://doi.org/10.1007/978-3-030-53552-0_22
LibreCat | DOI
 

2020 | Preprint | LibreCat-ID: 21536
Bengs, V., & Hüllermeier, E. (2020). Multi-Armed Bandits with Censored Consumption of Resources. ArXiv:2011.00813.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 15629
Wever, M. D., Tornede, A., Mohr, F., & Hüllermeier, E. (n.d.). LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-Label Classification. Presented at the Symposium on Intelligent Data Analysis, Konstanz, Germany: Springer.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 20306
Tornede, A., Wever, M. D., & Hüllermeier, E. (2020). Towards Meta-Algorithm Selection. In Workshop MetaLearn 2020 @ NeurIPS 2020. Online.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 17424
Tornede, T., Tornede, A., Wever, M. D., Mohr, F., & Hüllermeier, E. (2020). AutoML for Predictive Maintenance: One Tool to RUL Them All. In Proceedings of the ECMLPKDD 2020. https://doi.org/10.1007/978-3-030-66770-2_8
LibreCat | DOI
 

2020 | Book Chapter | LibreCat-ID: 19521
Pfannschmidt, K., & Hüllermeier, E. (2020). Learning Choice Functions via Pareto-Embeddings. In Lecture Notes in Computer Science. Cham. https://doi.org/10.1007/978-3-030-58285-2_30
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 16725
Richter, C., Hüllermeier, E., Jakobs, M.-C., & Wehrheim, H. (n.d.). Algorithm Selection for Software Validation Based on Graph Kernels. Journal of Automated Software Engineering.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 18276
Tornede, A., Wever, M. D., Werner, S., Mohr, F., & Hüllermeier, E. (2020). Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. In ACML 2020. Bangkok, Thailand.
LibreCat | Download (ext.)
 

2020 | Preprint | LibreCat-ID: 18017
El Mesaoudi-Paul, A., Bengs, V., & Hüllermeier, E. (n.d.). Online Preselection with Context Information under the Plackett-Luce  Model. ArXiv:2002.04275.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 21534
Bengs, V., & Hüllermeier, E. (2020). Preselection Bandits. In International Conference on Machine Learning (pp. 778–787).
LibreCat
 

2019 | Journal Article | LibreCat-ID: 14028
Bengs, V., & Holzmann, H. (2019). Adaptive confidence sets for kink estimation. Electronic Journal of Statistics, 1523–1579. https://doi.org/10.1214/19-ejs1555
LibreCat | DOI
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed