Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

40 Publications


2024 | Journal Article | LibreCat-ID: 51105
Wingenbach J, Schumacher S, Ma X. Manipulating spectral topology and exceptional points by nonlinearity in non-Hermitian polariton systems. Physical Review Research, in press. Published online 2024.
LibreCat
 

2024 | Journal Article | LibreCat-ID: 51104
Liang Q, Ma X, Gu C, et al. Photochemical Reaction Enabling the Engineering of Photonic Spin−Orbit Coupling in Organic-Crystal Optical Microcavities. Journal of the American Chemical Society (JACS). Published online 2024. doi:10.1021/jacs.3c11373
LibreCat | DOI
 

2024 | Journal Article | LibreCat-ID: 51106
Schneider T, Gao W, Zentgraf T, Schumacher S, Ma X. Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates. Nanophotonics. Published online 2024. doi:10.1515/nanoph-2023-0556
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 35077
Liang Q, Ma X, Long T, Yao J, Liao Q, Fu H. Circularly Polarized Lasing from a Microcavity Filled with Achiral Single‐Crystalline Microribbons. Angewandte Chemie International Edition. 2023;62(9). doi:10.1002/anie.202213229
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 36416
De J, Ma X, Yin F, et al. Room-Temperature Electrical Field-Enhanced Ultrafast Switch in Organic Microcavity Polariton Condensates. Journal of the American Chemical Society (JACS). 2023;145(3):1557-1563. doi:10.1021/jacs.2c07557
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 35160
Jia J, Cao X, Ma X, et al. Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions. Nature Communications. 2023;14(1). doi:10.1038/s41467-022-35745-w
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 40274
Zhai X, Ma X, Gao Y, et al. Electrically controlling vortices in a neutral exciton polariton condensate at room temperature. Physical Review Letters. 2023;131(13):136901. doi:10.1103/PhysRevLett.131.136901
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 48774
Gao Y, Ma X, Zhai X, et al. Single-shot spatial instability and electric control of polariton condensates at room temperature. Physical Review B. 2023;108(20):205303. doi:10.1103/physrevb.108.205303
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 30966
Ren J, Liao Q, Ma X, Schumacher S, Yao J, Fu H. Realization of Exciton‐Mediated Optical Spin‐Orbit Interaction in Organic Microcrystalline Resonators. Laser & Photonics Reviews. 2022;16(1). doi:10.1002/lpor.202100252
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 30967
Zhang X, Chen Z, Liu D, Wan L, Ma X, Gao T. Controlling exciton distribution in WS2 monolayer on a photonic crystal. Applied Physics Express. 2022;15(2). doi:10.35848/1882-0786/ac48d8
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 31938
Wingenbach J, Pukrop M, Schumacher S, Ma X. Dynamics of phase defects trapped in optically imprinted orbits in dissipative binary polariton condensates. Physical Review B. 2022;105(24). doi:10.1103/PhysRevB.105.245302
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 33080
Long T, Ma X, Ren J, et al. Helical Polariton Lasing from Topological Valleys in an Organic Crystalline Microcavity. Advanced Science. 2022;9(29). doi:10.1002/advs.202203588
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 32310
Li Y, Ma X, Zhai X, et al. Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nature Communications. 2022;13(1). doi:10.1038/s41467-022-31529-4
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 32148
Gao X, Hu W, Schumacher S, Ma X. Unidirectional vortex waveguides and multistable vortex pairs in polariton condensates. Optics Letters. 2022;47(13):3235-3238. doi:10.1364/ol.457724
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 31937
Li Y, Ma X, Hatzopoulos Z, Savvidis PG, Schumacher S, Gao T. Switching Off a Microcavity Polariton Condensate near the Exceptional Point. ACS Photonics. 2022;9(6):2079-2086. doi:10.1021/acsphotonics.2c00288
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 34094
Gao Y, Li Y, Ma X, et al. Tilting nondispersive bands in an empty microcavity. Applied Physics Letters. 2022;121(20). doi:10.1063/5.0093908
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21362
Xue Y, Chestnov I, Sedov E, et al. Split-ring polariton condensates as macroscopic two-level quantum systems. Physical Review Research. 2021;3(1). doi:10.1103/physrevresearch.3.013099
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21359
Barkhausen F, Pukrop M, Schumacher S, Ma X. Structuring coflowing and counterflowing currents of polariton condensates in concentric ring-shaped and elliptical potentials. Physical Review B. 2021;103(7). doi:10.1103/physrevb.103.075305
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 30965
Li Y, Li G, Zhai X, et al. Spin splitting in a MoS2 monolayer induced by exciton interaction. Physical Review B. 2020;101(24). doi:10.1103/physrevb.101.245439
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 20584
Ren J, Liao Q, Huang H, et al. Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity. Nano Letters. 2020;20(10):7550-7557. doi:10.1021/acs.nanolett.0c03009
LibreCat | DOI | PubMed | Europe PMC
 

Filters and Search Terms

(person=59416)

status=public

Search

Filter Publications

Display / Sort

Citation Style: AMA

Export / Embed