Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

40 Publications


2024 | Journal Article | LibreCat-ID: 51105
J. Wingenbach, S. Schumacher, and X. Ma, “Manipulating spectral topology and exceptional points by nonlinearity in non-Hermitian polariton systems,” Physical Review Research, in press, 2024.
LibreCat
 

2024 | Journal Article | LibreCat-ID: 51104
Q. Liang et al., “Photochemical Reaction Enabling the Engineering of Photonic Spin−Orbit Coupling in Organic-Crystal Optical Microcavities,” Journal of the American Chemical Society (JACS), 2024, doi: 10.1021/jacs.3c11373.
LibreCat | DOI
 

2024 | Journal Article | LibreCat-ID: 51106
T. Schneider, W. Gao, T. Zentgraf, S. Schumacher, and X. Ma, “Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates,” Nanophotonics, 2024, doi: 10.1515/nanoph-2023-0556.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 35077
Q. Liang, X. Ma, T. Long, J. Yao, Q. Liao, and H. Fu, “Circularly Polarized Lasing from a Microcavity Filled with Achiral Single‐Crystalline Microribbons,” Angewandte Chemie International Edition, vol. 62, no. 9, Art. no. e202213229, 2023, doi: 10.1002/anie.202213229.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 36416
J. De et al., “Room-Temperature Electrical Field-Enhanced Ultrafast Switch in Organic Microcavity Polariton Condensates,” Journal of the American Chemical Society (JACS), vol. 145, no. 3, pp. 1557–1563, 2023, doi: 10.1021/jacs.2c07557.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 35160
J. Jia et al., “Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions,” Nature Communications, vol. 14, no. 1, Art. no. 31, 2023, doi: 10.1038/s41467-022-35745-w.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 40274
X. Zhai et al., “Electrically controlling vortices in a neutral exciton polariton condensate at room temperature,” Physical Review Letters, vol. 131, no. 13, p. 136901, 2023, doi: 10.1103/PhysRevLett.131.136901.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 48774
Y. Gao et al., “Single-shot spatial instability and electric control of polariton condensates at room temperature,” Physical Review B, vol. 108, no. 20, p. 205303, 2023, doi: 10.1103/physrevb.108.205303.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 30966
J. Ren, Q. Liao, X. Ma, S. Schumacher, J. Yao, and H. Fu, “Realization of Exciton‐Mediated Optical Spin‐Orbit Interaction in Organic Microcrystalline Resonators,” Laser & Photonics Reviews, vol. 16, no. 1, Art. no. 2100252, 2022, doi: 10.1002/lpor.202100252.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 30967
X. Zhang, Z. Chen, D. Liu, L. Wan, X. Ma, and T. Gao, “Controlling exciton distribution in WS2 monolayer on a photonic crystal,” Applied Physics Express, vol. 15, no. 2, Art. no. 022004, 2022, doi: 10.35848/1882-0786/ac48d8.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 31938
J. Wingenbach, M. Pukrop, S. Schumacher, and X. Ma, “Dynamics of phase defects trapped in optically imprinted orbits in dissipative binary polariton condensates,” Physical Review B, vol. 105, no. 24, Art. no. 245302, 2022, doi: 10.1103/PhysRevB.105.245302.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 33080
T. Long et al., “Helical Polariton Lasing from Topological Valleys in an Organic Crystalline Microcavity,” Advanced Science, vol. 9, no. 29, Art. no. 2203588, 2022, doi: 10.1002/advs.202203588.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 32310
Y. Li et al., “Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature,” Nature Communications, vol. 13, no. 1, Art. no. 3785, 2022, doi: 10.1038/s41467-022-31529-4.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 32148
X. Gao, W. Hu, S. Schumacher, and X. Ma, “Unidirectional vortex waveguides and multistable vortex pairs in polariton condensates,” Optics Letters, vol. 47, no. 13, pp. 3235–3238, 2022, doi: 10.1364/ol.457724.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 31937
Y. Li, X. Ma, Z. Hatzopoulos, P. G. Savvidis, S. Schumacher, and T. Gao, “Switching Off a Microcavity Polariton Condensate near the Exceptional Point,” ACS Photonics, vol. 9, no. 6, pp. 2079–2086, 2022, doi: 10.1021/acsphotonics.2c00288.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 34094
Y. Gao et al., “Tilting nondispersive bands in an empty microcavity,” Applied Physics Letters, vol. 121, no. 20, Art. no. 201103, 2022, doi: 10.1063/5.0093908.
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21362
Y. Xue et al., “Split-ring polariton condensates as macroscopic two-level quantum systems,” Physical Review Research, vol. 3, no. 1, Art. no. 013099, 2021, doi: 10.1103/physrevresearch.3.013099.
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21359
F. Barkhausen, M. Pukrop, S. Schumacher, and X. Ma, “Structuring coflowing and counterflowing currents of polariton condensates in concentric ring-shaped and elliptical potentials,” Physical Review B, vol. 103, no. 7, Art. no. 075305, 2021, doi: 10.1103/physrevb.103.075305.
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 30965
Y. Li et al., “Spin splitting in a MoS2 monolayer induced by exciton interaction,” Physical Review B, vol. 101, no. 24, Art. no. 245439, 2020, doi: 10.1103/physrevb.101.245439.
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 20584
J. Ren et al., “Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity.,” Nano Letters, vol. 20, no. 10, pp. 7550–7557, 2020, doi: 10.1021/acs.nanolett.0c03009.
LibreCat | DOI | PubMed | Europe PMC
 

Filters and Search Terms

(person=59416)

status=public

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed