Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

40 Publications


2024 | Journal Article | LibreCat-ID: 51105
Wingenbach, Jan, et al. “Manipulating Spectral Topology and Exceptional Points by Nonlinearity in Non-Hermitian Polariton Systems.” Physical Review Research, in Press, 2024.
LibreCat
 

2024 | Journal Article | LibreCat-ID: 51104
Liang, Qian, et al. “Photochemical Reaction Enabling the Engineering of Photonic Spin−Orbit Coupling in Organic-Crystal Optical Microcavities.” Journal of the American Chemical Society (JACS), 2024, doi:10.1021/jacs.3c11373.
LibreCat | DOI
 

2024 | Journal Article | LibreCat-ID: 51106
Schneider, Tobias, et al. “Topological Edge and Corner States in Coupled Wave Lattices in Nonlinear Polariton Condensates.” Nanophotonics, 2024, doi:10.1515/nanoph-2023-0556.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 35077
Liang, Qian, et al. “Circularly Polarized Lasing from a Microcavity Filled with Achiral Single‐Crystalline Microribbons.” Angewandte Chemie International Edition, vol. 62, no. 9, e202213229, Wiley, 2023, doi:10.1002/anie.202213229.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 36416
De, Jianbo, et al. “Room-Temperature Electrical Field-Enhanced Ultrafast Switch in Organic Microcavity Polariton Condensates.” Journal of the American Chemical Society (JACS), vol. 145, no. 3, American Chemical Society (ACS), 2023, pp. 1557–63, doi:10.1021/jacs.2c07557.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 35160
Jia, Jichao, et al. “Circularly Polarized Electroluminescence from a Single-Crystal Organic Microcavity Light-Emitting Diode Based on Photonic Spin-Orbit Interactions.” Nature Communications, vol. 14, no. 1, 31, Springer Science and Business Media LLC, 2023, doi:10.1038/s41467-022-35745-w.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 40274
Zhai, Xiaokun, et al. “Electrically Controlling Vortices in a Neutral Exciton Polariton Condensate at Room Temperature.” Physical Review Letters, vol. 131, no. 13, 2023, p. 136901, doi:10.1103/PhysRevLett.131.136901.
LibreCat | DOI
 

2023 | Journal Article | LibreCat-ID: 48774
Gao, Ying, et al. “Single-Shot Spatial Instability and Electric Control of Polariton Condensates at Room Temperature.” Physical Review B, vol. 108, no. 20, American Physical Society (APS), 2023, p. 205303, doi:10.1103/physrevb.108.205303.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 30966
Ren, Jiahuan, et al. “Realization of Exciton‐Mediated Optical Spin‐Orbit Interaction in Organic Microcrystalline Resonators.” Laser & Photonics Reviews, vol. 16, no. 1, 2100252, Wiley, 2022, doi:10.1002/lpor.202100252.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 30967
Zhang, Xiu, et al. “Controlling Exciton Distribution in WS2 Monolayer on a Photonic Crystal.” Applied Physics Express, vol. 15, no. 2, 022004, IOP Publishing, 2022, doi:10.35848/1882-0786/ac48d8.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 31938
Wingenbach, Jan, et al. “Dynamics of Phase Defects Trapped in Optically Imprinted Orbits in Dissipative Binary Polariton Condensates.” Physical Review B, vol. 105, no. 24, 245302, APS, 2022, doi:10.1103/PhysRevB.105.245302.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 33080
Long, Teng, et al. “Helical Polariton Lasing from Topological Valleys in an Organic Crystalline Microcavity.” Advanced Science, vol. 9, no. 29, 2203588, Wiley, 2022, doi:10.1002/advs.202203588.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 32310
Li, Yao, et al. “Manipulating Polariton Condensates by Rashba-Dresselhaus Coupling at Room Temperature.” Nature Communications, vol. 13, no. 1, 3785, Springer Science and Business Media LLC, 2022, doi:10.1038/s41467-022-31529-4.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 32148
Gao, Xinghui, et al. “Unidirectional Vortex Waveguides and Multistable Vortex Pairs in Polariton Condensates.” Optics Letters, vol. 47, no. 13, Optica Publishing Group, 2022, pp. 3235–38, doi:10.1364/ol.457724.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 31937
Li, Yao, et al. “Switching Off a Microcavity Polariton Condensate near the Exceptional Point.” ACS Photonics, vol. 9, no. 6, American Chemical Society (ACS), 2022, pp. 2079–86, doi:10.1021/acsphotonics.2c00288.
LibreCat | DOI
 

2022 | Journal Article | LibreCat-ID: 34094
Gao, Ying, et al. “Tilting Nondispersive Bands in an Empty Microcavity.” Applied Physics Letters, vol. 121, no. 20, 201103, AIP Publishing, 2022, doi:10.1063/5.0093908.
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21362
Xue, Yan, et al. “Split-Ring Polariton Condensates as Macroscopic Two-Level Quantum Systems.” Physical Review Research, vol. 3, no. 1, 013099, 2021, doi:10.1103/physrevresearch.3.013099.
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21359
Barkhausen, Franziska, et al. “Structuring Coflowing and Counterflowing Currents of Polariton Condensates in Concentric Ring-Shaped and Elliptical Potentials.” Physical Review B, vol. 103, no. 7, 075305, 2021, doi:10.1103/physrevb.103.075305.
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 30965
Li, Yao, et al. “Spin Splitting in a MoS2 Monolayer Induced by Exciton Interaction.” Physical Review B, vol. 101, no. 24, 245439, American Physical Society (APS), 2020, doi:10.1103/physrevb.101.245439.
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 20584
Ren, J., et al. “Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity.” Nano Letters, vol. 20, no. 10, 2020, pp. 7550–57, doi:10.1021/acs.nanolett.0c03009.
LibreCat | DOI | PubMed | Europe PMC
 

Filters and Search Terms

(person=59416)

status=public

Search

Filter Publications

Display / Sort

Citation Style: MLA

Export / Embed