Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

428 Publications


2020 | Conference Paper | LibreCat-ID: 17407
A. Tornede, M. D. Wever, and E. Hüllermeier, “Extreme Algorithm Selection with Dyadic Feature Representation,” in Discovery Science, 2020.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 19953
C. Damke, V. Melnikov, and E. Hüllermeier, “A Novel Higher-order Weisfeiler-Lehman Graph Convolution,” in Proceedings of the 12th Asian Conference on Machine Learning (ACML 2020), Bangkok, Thailand, 2020, vol. 129, pp. 49–64.
LibreCat | Files available | arXiv
 

2020 | Conference Paper | LibreCat-ID: 17408
J. M. Hanselle, A. Tornede, M. D. Wever, and E. Hüllermeier, “Hybrid Ranking and Regression for Algorithm Selection,” in KI 2020: Advances in Artificial Intelligence, 2020.
LibreCat
 

2020 | Book Chapter | LibreCat-ID: 18014
A. El Mesaoudi-Paul, D. Weiß, V. Bengs, E. Hüllermeier, and K. Tierney, “Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach,” in Learning and Intelligent Optimization. LION 2020., vol. 12096, Cham: Springer, 2020, pp. 216–232.
LibreCat | DOI
 

2020 | Preprint | LibreCat-ID: 17605
S. H. Heid, M. D. Wever, and E. Hüllermeier, “Reliable Part-of-Speech Tagging of Historical Corpora through Set-Valued Prediction,” Journal of Data Mining and Digital Humanities. episciences.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 15629
M. D. Wever, A. Tornede, F. Mohr, and E. Hüllermeier, “LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-Label Classification,” presented at the Symposium on Intelligent Data Analysis, Konstanz, Germany.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 20306
A. Tornede, M. D. Wever, and E. Hüllermeier, “Towards Meta-Algorithm Selection,” in Workshop MetaLearn 2020 @ NeurIPS 2020, Online, 2020.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 17424
T. Tornede, A. Tornede, M. D. Wever, F. Mohr, and E. Hüllermeier, “AutoML for Predictive Maintenance: One Tool to RUL them all,” in Proceedings of the ECMLPKDD 2020, 2020.
LibreCat
 

2020 | Book Chapter | LibreCat-ID: 19521
K. Pfannschmidt and E. Hüllermeier, “Learning Choice Functions via Pareto-Embeddings,” in Lecture Notes in Computer Science, Cham, 2020.
LibreCat | DOI
 

2020 | Journal Article | LibreCat-ID: 16725
C. Richter, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim, “Algorithm Selection for Software Validation Based on Graph Kernels,” Journal of Automated Software Engineering.
LibreCat
 

2020 | Preprint | LibreCat-ID: 18017
A. El Mesaoudi-Paul, V. Bengs, and E. Hüllermeier, “Online Preselection with Context Information under the Plackett-Luce  Model,” arXiv:2002.04275. .
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 18276
A. Tornede, M. D. Wever, S. Werner, F. Mohr, and E. Hüllermeier, “Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis,” in ACML 2020, Bangkok, Thailand, 2020.
LibreCat | Download (ext.)
 

2019 | Journal Article | LibreCat-ID: 14028
V. Bengs and H. Holzmann, “Adaptive confidence sets for kink estimation,” Electronic Journal of Statistics, pp. 1523–1579, 2019.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15002
W. Waegeman, K. Dembczynski, and E. Hüllermeier, “Multi-target prediction: a unifying view on problems and methods,” Data Mining and Knowledge Discovery, vol. 33, no. 2, pp. 293–324, 2019.
LibreCat | Files available | DOI
 

2019 | Conference Paper | LibreCat-ID: 15014
E. Hüllermeier, I. Couso, and S. Diestercke, “Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants,” in Proceedings SUM 2019, International Conference on Scalable Uncertainty Management, 2019.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 15007
V. Melnikov and E. Hüllermeier, “Learning to Aggregate: Tackling the Aggregation/Disaggregation Problem for OWA,” in Proceedings ACML, Asian Conference on Machine Learning (Proceedings of Machine Learning Research, 101), 2019.
LibreCat | Files available | DOI
 

2019 | Journal Article | LibreCat-ID: 17565
M.-L. Merten, N. Seemann, and M. D. Wever, “Grammatikwandel digital-kulturwissenschaftlich erforscht. Mittelniederdeutscher Sprachausbau im interdisziplinären Zugriff,” Niederdeutsches Jahrbuch, no. 142, pp. 124–146, 2019.
LibreCat
 

2019 | Preprint | LibreCat-ID: 18018
V. Bengs and H. Holzmann, “Uniform approximation in classical weak convergence theory,” arXiv:1903.09864. 2019.
LibreCat
 

2019 | Preprint | LibreCat-ID: 19523
K. Pfannschmidt, P. Gupta, and E. Hüllermeier, “Learning Choice Functions: Concepts and Architectures,” arXiv:1901.10860. 2019.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 15003
T. Mortier, M. Wydmuch, K. Dembczynski, E. Hüllermeier, and W. Waegeman, “Set-Valued Prediction in Multi-Class Classification,” in Proceedings of the 31st Benelux Conference on Artificial Intelligence {(BNAIC} 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels, Belgium, November 6-8, 2019, 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15015
S. Henzgen and E. Hüllermeier, “Mining Rank Data,” ACM Transactions on Knowledge Discovery from Data, pp. 1–36, 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 10232
M. D. Wever, F. Mohr, A. Tornede, and E. Hüllermeier, “Automating Multi-Label Classification Extending ML-Plan,” presented at the 6th ICML Workshop on Automated Machine Learning (AutoML 2019), Long Beach, CA, USA, 2019.
LibreCat | Files available
 

2019 | Journal Article | LibreCat-ID: 10578
V. K. Tagne, S. Fotso, L. A. Fono, and E. Hüllermeier, “Choice Functions Generated by Mallows and Plackett–Luce Relations,” New Mathematics and Natural Computation, vol. 15, no. 2, pp. 191–213, 2019.
LibreCat
 

2019 | Book Chapter | LibreCat-ID: 15004
M. Ahmadi Fahandar and E. Hüllermeier, “Feature Selection for Analogy-Based Learning to Rank,” in Discovery Science, Cham, 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15009
N. Epple, S. Dari, L. Drees, V. Protschky, and A. Riener, “Influence of Cruise Control on Driver Guidance - a Comparison between System Generations and Countries,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15011
A. Tornede, M. D. Wever, and E. Hüllermeier, “Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking,” in Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019, Dortmund, 2019, pp. 135–146.
LibreCat | Files available
 

2019 | Book Chapter | LibreCat-ID: 15005
M. Ahmadi Fahandar and E. Hüllermeier, “Analogy-Based Preference Learning with Kernels,” in KI 2019: Advances in Artificial Intelligence, Cham, 2019.
LibreCat | DOI
 

2019 | Preprint | LibreCat-ID: 18016
V. Bengs and E. Hüllermeier, “Preselection Bandits under the Plackett-Luce Model,” arXiv:1907.06123. .
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 13132
F. Mohr, M. D. Wever, A. Tornede, and E. Hüllermeier, “From Automated to On-The-Fly Machine Learning,” in INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft, Kassel, 2019, pp. 273–274.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 14027
V. Bengs, M. Eulert, and H. Holzmann, “Asymptotic confidence sets for the jump curve in bivariate regression problems,” Journal of Multivariate Analysis, pp. 291–312, 2019.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15001
I. Couso, C. Borgelt, E. Hüllermeier, and R. Kruse, “Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning,” IEEE Computational Intelligence Magazine, pp. 31–44, 2019.
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15006
V.-L. Nguyen, S. Destercke, and E. Hüllermeier, “Epistemic Uncertainty Sampling,” in Discovery Science, Cham, 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15013
K. Brinker and E. Hüllermeier, “A Reduction of Label Ranking to Multiclass Classification,” in Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, 2019.
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 8868
M. D. Wever, F. Mohr, E. Hüllermeier, and A. Hetzer, “Towards Automated Machine Learning for Multi-Label Classification,” presented at the European Conference on Data Analytics (ECDA), Bayreuth, Germany, 2019.
LibreCat | Files available
 

2019 | Journal Article | LibreCat-ID: 15025
M. D. Wever, L. van Rooijen, and H. Hamann, “Multi-Oracle Coevolutionary Learning of Requirements Specifications from Examples in On-The-Fly Markets,” Evolutionary Computation.
LibreCat | Files available | DOI
 

2018 | Conference Paper | LibreCat-ID: 10184
D. Schäfer and E. Hüllermeier, “Preference-Based Reinforcement Learning Using Dyad Ranking,” in Proc. 21st Int. Conference on Discovery Science (DS), 2018, pp. 161–175.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2479
F. Mohr, M. D. Wever, E. Hüllermeier, and A. Faez, “(WIP) Towards the Automated Composition of Machine Learning Services,” in SCC, San Francisco, CA, USA, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852
M. D. Wever, F. Mohr, and E. Hüllermeier, “ML-Plan for Unlimited-Length Machine Learning Pipelines,” in ICML 2018 AutoML Workshop, Stockholm, Sweden, 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Conference (Editor) | LibreCat-ID: 10591
S. Abiteboul et al., Eds., Research Directions for Principles of Data Management, vol. 7, no. 1. 2018, pp. 1–29.
LibreCat
 

2018 | Preprint | LibreCat-ID: 17713
M. D. Wever, F. Mohr, and E. Hüllermeier, “Automated Multi-Label Classification based on ML-Plan.” Arxiv, 2018.
LibreCat | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 19524
K. Pfannschmidt, P. Gupta, and E. Hüllermeier, “Deep Architectures for Learning Context-dependent Ranking Functions,” arXiv:1803.05796. 2018.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
M. Scheibl, Learning about learning curves from dataset properties. Universität Paderborn, 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10148
A. El Mesaoudi-Paul, E. Hüllermeier, and R. Busa-Fekete, “Ranking Distributions based on  Noisy Sorting,” in Proc. 35th Int. Conference on Machine Learning (ICML), 2018, pp. 3469–3477.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
V.-L. Nguyen, S. Destercke, M.-H. Masson, and E. Hüllermeier, “Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty,” in Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI), 2018, pp. 5089–5095.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
D. Schäfer and E. Hüllermeier, “Dyad ranking using Plackett-Luce models based on joint feature representations,” Machine Learning, vol. 107, no. 5, pp. 903–941, 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2109
M. D. Wever, F. Mohr, and E. Hüllermeier, “Ensembles of Evolved Nested Dichotomies for Classification,” in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, Kyoto, Japan, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2471
F. Mohr, M. D. Wever, and E. Hüllermeier, “On-The-Fly Service Construction with Prototypes,” in SCC, San Francisco, CA, USA, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
D. Schäfer and E. Hüllermeier, “Preference-Based Reinforcement Learning Using Dyad Ranking,” in Discovery Science, Cham: Springer International Publishing, 2018, pp. 161–175.
LibreCat | Files available | DOI
 

2018 | Preprint | LibreCat-ID: 17714
F. Mohr, M. D. Wever, and E. Hüllermeier, “Automated machine learning service composition.” 2018.
LibreCat | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 10276
D. Schäfer and E. Hüllermeier, “Dyad Ranking Using Plackett-Luce Models based on joint feature representations,” Machine Learning, vol. 107, no. 5, pp. 903–941, 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10149
M. Hesse, J. Timmermann, E. Hüllermeier, and A. Trächtler, “A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart,” in Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24, 2018, pp. 15–20.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
I. Couso and E. Hüllermeier, “Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators,” in Frontiers in Computational Intelligence, S. Mostaghim, A. Nürnberger, and C. Borgelt, Eds. Springer, 2018, pp. 31–46.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857
F. Mohr, T. Lettmann, E. Hüllermeier, and M. D. Wever, “Programmatic Task Network Planning,” in Proceedings of the 1st ICAPS Workshop on Hierarchical Planning, Delft, Netherlands, 2018, pp. 31–39.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3552
F. Mohr, M. D. Wever, and E. Hüllermeier, “Reduction Stumps for Multi-Class Classification,” in Proceedings of the Symposium on Intelligent Data Analysis, ‘s-Hertogenbosch, the Netherlands.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10145
M. Ahmadi Fahandar and E. Hüllermeier, “Learning to Rank Based on Analogical Reasoning,” in Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI), 2018, pp. 2951–2958.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10152
E. L. Mencia, J. Fürnkranz, E. Hüllermeier, and M. Rapp, “Learning interpretable rules for multi-label classification,” in Explainable and Interpretable Models in Computer Vision and Machine Learning, H. Jair Escalante, S. Escalera, I. Guyon, X. Baro, Y. Güclüütürk, U. Güclü, and M. A. J. van Gerven, Eds. Springer, 2018, pp. 81–113.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379
N. Seemann, M. Geierhos, M.-L. Merten, D. Tophinke, M. D. Wever, and E. Hüllermeier, “Supporting the Cognitive Process in Annotation Tasks,” in Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft, Stuttgart, Germany, 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3510
F. Mohr, M. D. Wever, and E. Hüllermeier, “ML-Plan: Automated Machine Learning via Hierarchical Planning,” Machine Learning, pp. 1495–1515, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
H. Graf, Ranking of Classification Algorithms in AutoML. Universität Paderborn, 2018.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 3402
V. Melnikov and E. Hüllermeier, “On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis,” Machine Learning, 2018.
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 10204
R. Ewerth et al., “Estimating relative depth in single images via rankboost,” in Proc. IEEE Int. Conf. on Multimedia and Expo (ICME 2017), 2017, pp. 919–924.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10209
M. Ahmadi Fahandar and E. Hüllermeier, “Learning to Rank based on Analogical Reasoning,” in Proc. AAAI 2017, 32nd AAAI Conference on Artificial Intelligence, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10216
A. Shaker, W. Heldt, and E. Hüllermeier, “Learning TSK Fuzzy Rules from Data Streams,” in Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1180
M. D. Wever, F. Mohr, and E. Hüllermeier, “Automatic Machine Learning: Hierachical Planning Versus Evolutionary Optimization,” in 27th Workshop Computational Intelligence, Dortmund, 2017.
LibreCat | Files available | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 15110
I. Couso, D. Dubois, and E. Hüllermeier, “Maximum likelihood estimation and coarse data,” in in Proceedings SUM 2017, 11th International Conference on Scalable Uncertainty Management, Granada, Spain, 2017, pp. 3–16.
LibreCat
 

2017 | Bachelorsthesis | LibreCat-ID: 5694
N. N. Schnitker, Genetischer Algorithmus zur Erstellung von Ensembles von Nested Dichotomies. Universität Paderborn, 2017.
LibreCat
 

2017 | Encyclopedia Article | LibreCat-ID: 10589
J. Fürnkranz and E. Hüllermeier, “Preference Learning,” in Encyclopedia of Machine Learning and Data Mining, 2017, pp. 1000–1005.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10205
M. Ahmadi Fahandar, E. Hüllermeier, and I. Couso, “Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent  Coarsening,” in Proc. 34th Int. Conf. on Machine Learning (ICML 2017), 2017, pp. 1078–1087.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10212
F. Hoffmann, E. Hüllermeier, and R. Mikut, “(Hrsg.) Proceedings 27. Workshop Computational Intelligence, KIT Scientific Publishing, Karlsruhe, Germany 2017,” 2017.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10267
M. Bräuning, E. Hüllermeier, T. Keller, and M. Glaum, “Lexicographic preferences for predictive modeling of human decision making. A new machine learning method with an application  in accounting,” European Journal of Operational Research, vol. 258, no. 1, pp. 295–306, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 15399
M. Czech, E. Hüllermeier, M. C. Jacobs, and H. Wehrheim, “Predicting rankings of software verification tools,” in in Proceedings ESEC/FSE Workshops 2017 - 3rd ACM SIGSOFT, International Workshop on Software Analytics (SWAN 2017), Paderborn Germany, 2017.
LibreCat
 

2017 | Conference Abstract | LibreCat-ID: 5722
P. Gupta et al., “jPL: A Java-based Software Framework for Preference Learning,” presented at the WDA 2017 Workshops: KDML, FGWM, IR, and FGDB, Rostock, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10213
V. Melnikov and E. Hüllermeier, “Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics,” in Proceedings 27. Workshop Computational Intelligence, Dortmund, Germany 2017, 2017, pp. 1–12.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10268
M.-C. Platenius, A. Shaker, M. Becker, E. Hüllermeier, and W. Schäfer, “Imprecise Matching of Requirements Specifications for Software Services Using Fuzzy Logic,” IEEE Transactions on Software Engineering, vol. 43, no. 8, pp. 739–759, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10206
F. Mohr, T. Lettmann, and E. Hüllermeier, “Planning with Independent Task Networks,” in Proc. 40th Annual German Conference on Advances in Artificial Intelligence (KI 2017), 2017, pp. 193–206.
LibreCat | Files available | DOI
 

2017 | Conference Paper | LibreCat-ID: 10207
M. Czech, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim, “Predicting rankings of software verification tools,” in Proc. 3rd ACM SIGSOFT Int. I Workshop on Software Analytics (SWAN@ESEC/SIGSOFT FSE 2017, 2017, pp. 23–26.
LibreCat
 

2017 | Journal Article | LibreCat-ID: 10269
E. Hüllermeier, “From Knowledge-based to Data-driven Modeling of Fuzzy Rule-based Systems: A Critical Reflection,” The Computing Research Repository  (CoRR), 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 115
M.-C. Jakobs, J. Krämer, D. van Straaten, and T. Lettmann, “Certification Matters for Service Markets,” in The Ninth International Conferences on Advanced Service Computing (SERVICE COMPUTATION), 2017, pp. 7–12.
LibreCat | Files available
 

2017 | Book Chapter | LibreCat-ID: 18167
N. Seemann, M.-L. Merten, M. Geierhos, D. Tophinke, and E. Hlüllermeier, “Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low German,” in Proceedings of Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, 2017.
LibreCat
 

2017 | Mastersthesis | LibreCat-ID: 5724
A. Hetzer and T. Tornede, Solving the Container Pre-Marshalling Problem using Reinforcement Learning and Structured Output Prediction. Universität Paderborn, 2017.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 71
M. Czech, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim, “Predicting Rankings of Software Verification Tools,” in Proceedings of the 3rd International Workshop on Software Analytics, 2017, pp. 23–26.
LibreCat | Files available | DOI
 

2017 | Book Chapter | LibreCat-ID: 10784
J. Fürnkranz and E. Hüllermeier, “Preference Learning,” in Encyclopedia of Machine Learning and Data Mining, vol. 107, C. Sammut and G. I. Webb, Eds. Springer, 2017, pp. 1000–1005.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10208
I. Couso, D. Dubois, and E. Hüllermeier, “Maximum Likelihood Estimation and Coarse Data,” in Proc. 11th Int. Conf. on Scalable Uncertainty Management (SUM 2017), 2017, pp. 3–16.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1158
N. Seemann, M.-L. Merten, M. Geierhos, D. Tophinke, and E. Hüllermeier, “Annotation Challenges for Reconstructing the Structural Elaboration of Middle Low German,” in Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, Vancouver, BC, Canada, 2017, pp. 40–45.
LibreCat | DOI
 

2017 | Conference Paper | LibreCat-ID: 15397
V. Melnikov and E. Hüllermeier, “Optimizing the structure of nested dichotomies. A comparison of two heuristics,” in in Proceedings 27th Workshop Computational Intelligence, Dortmund Germany, 2017, pp. 1–12.
LibreCat
 

2017 | Report | LibreCat-ID: 72
M. Czech, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim, Predicting Rankings of Software Verification Competitions. 2017.
LibreCat | Files available
 

2017 | Conference Paper | LibreCat-ID: 3325
V. Melnikov and E. Hüllermeier, “Optimizing the Structure of Nested Dichotomies: A Comparison of Two Heuristics,” in Proceedings. 27. Workshop Computational Intelligence, Dortmund, 23. - 24. November 2017, 2017.
LibreCat | Files available | DOI
 

2016 | Encyclopedia Article | LibreCat-ID: 10785
J. Fürnkranz and E. Hüllermeier, “Preference Learning,” in Encyclopedia of Machine Learning and Data Mining, C. Sammut and G. I. Webb, Eds. Springer, 2016.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10223
V. Melnikov and E. Hüllermeier, “Learning to aggregate using uninorms,  in Proceedings ECML/PKDD-2016,” in European Conference on Machine Learning and Knowledge Discovery in Databases, Part II, Riva del Garda, Italy, 2016, pp. 756–771.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10228
D. Schäfer and E. Hüllermeier, “Preference-Based Reinforcement Learning Using Dyad Ranking,” in Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning, 2016.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10230
S. Lu and E. Hüllermeier, “Support vector classification on noisy data using fuzzy supersets losses,” in Proceedings 26. Workshop Computational Intelligence, KIT Scientific Publishing, 2016, pp. 1–8.
LibreCat
 

2016 | Journal Article | LibreCat-ID: 10266
M. Riemenschneider, R. Senge, U. Neumann, E. Hüllermeier, and D. Heider, “Exploiting HIV-1 protease and reverse transcriptase cross-resistance information for improved drug resistance prediction by means of multi-label classification,” BioData Mining, vol. 9, no. 10, 2016.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15401
D. Schäfer and E. Hüllermeier, “Preference -based reinforcement learning using dyad ranking,” in in Proceedings DA2PL`2016 Euro Mini Conference From Multiple Criteria Decision Aid to Preference Learning, Paderborn, Germany, 2016.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10224
K. Dembczynski, W. Kotlowski, W. Waegeman, R. Busa-Fekete, and E. Hüllermeier, “Consistency of probalistic classifier trees,” in In Proceedings ECML/PKDD European Conference on Maschine Learning and Knowledge Discovery in Databases, Part II, Riva del Garda, Italy, 2016, pp. 511–526.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10229
I. Couso, M. Ahmadi Fahandar, and E. Hüllermeier, “Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators,” in Proceedings DA2PL ´2016, Euro Mini Conference from Multiple Criteria Decision Aid to Preference Learning, 2016.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10231
D. Schäfer and E. Hüllermeier, “Plackett-Luce networks for dyad ranking,” in In Workshop LWDA “Lernen, Wissen, Daten, Analysen,” 2016.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15402
I. Couso, M. Ahmadi Fahandar, and E. Hüllermeier, “Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators,” in in Proceedings DA2PL 2016 EURO Mini Conference From Multiple Criteria Decision Aid to Preference Learning, Paderborn Germany, 2016.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 15111
K. Pfannschmidt, E. Hüllermeier, S. Held, and R. Neiger, “Evaluating tests in medical  diagnosis-Combining machine learning with game-theoretical concepts,” in In Proceedings IPMU 16th International Conference on Information Processing and Management  of Uncertainty in Knowledge-Based Systems, Part 1, Eindhoven, The Netherlands, 2016, pp. 450–461.
LibreCat
 

2016 | Conference Paper | LibreCat-ID: 10225
A. Shabani, A. Paul, R. Platon, and E. Hüllermeier, “Predicting the electricity consumption of buildings: An improved CBR approach,” in In Proceedings ICCBR, 24th International Conference on Case-Based Reasoning, Atlanta, GA, USA, 2016, pp. 356–369.
LibreCat
 

2016 | Conference (Editor) | LibreCat-ID: 10263
G. A. Kaminka et al., Eds., ECAI 2016, 22nd European Conference on Artificial Intelligence, including PAIS 2016, Prestigious Applications of Artificial Intelligence, vol. 285. The Hague, The Netherlands: IOS Press, 2016.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed